
Determining Contact Data for Time Stepping Rigid Body
Simulations with Convex Polyhedral Geometries

Bjoern Cheng Yi1 and Evan M. Drumwright2

Abstract— Dynamic simulation of multi-rigid bodies is a
key tool in robotics and many other domains. Over the past
two decades, such simulations have moved from modeling
primariliy contact-free motion to simulating contact-based in-
teractions like locomotion and grasping. Contact data—points
of contact, surface normals, and signed distance—have proven
straightforward to compute for multi-bodies modeled using
primitive shapes, but there has been no accepted procedure
for determining such data for bodies with convex polyhedral
bodies. This paper investigates techniques that can be used to
determine such data and pays special attention to numerical
issues. We describe a unit test and provide two verification
benchmarks for assessing correctness.

I. INTRODUCTION

Multi-rigid body simulation is a key tool used for model-
ing the behavior of many robotic systems. Importing kine-
matic and dynamic parameters is somewhat tedious, but can
be accomplished for, e.g., typical legged and manipulator
robots, within a few hours. Importing geometry for governing
contact interactions is much more challenging.

One of the more common representations is that of
polygon-based geometries, which are ubiquitous in geometric
modeling for both computer animation and computer aided
engineering. In the former context, triangle meshes, also
known as “triangle soups”, provide the ability to approximate
shapes, both solid and otherwise, to geometric precision
that scales with the number of triangles. In the latter con-
text, geometries comprised of interconnected tetrahedra or
hexahedra, among other possible polyhedra, are used to
compute stresses on materials and predict their deformation;
these collections of interconnected polyhedra are readily
exported into a boundary representation for a rigid link.
Since polygon-based geometries are supported by many 3D
modeling and engineering tools and are sufficiently flexible
to approximate any shape, effective incorporation of this
representation into rigid body simulations is critical.

The community of physics-based simulation developers
focused on computer games has developed many approaches
for working with polygon-based geometries. These ap-
proaches typically consider polyhedra and triangle mesh
representations separately, for good reason: since triangle
meshes need not describe a solid body, existing rigid body
simulation techniques are generally unable to correct the
inevitable interpenetration in a plausible manner (even as the
integration step tends to zero). In any case, we characterize
without prejudice that community’s approaches as “better

1 George Washington University, Washington, DC 20052, USA
2 Toyota Research Institute, Palo Alto, CA 94306, USA

always fast than always correct” because it is often possible
for game developers to implement ad hoc solutions to work
around artifacts. Indeed, recent work [22] found that mul-
tiple open source multi-body simulators exhibit significant
artifacts when using convex polyhedral geometric represen-
tations in the context of simulating robotic grasping. We will
indeed demonstrate that a library used by such simulators
to compute interpenetration depth generally fails to work
correctly. We investigated that particular library after noting
the experiences of others in locating or attempting to develop
robust implementations of its underlying algorithms (GJK
and EPA); we failed to develop a robust implementation also.

This paper therefore focuses on correct, numerically ro-
bust techniques for rigid body dynamics with rigid contact.
Speed is a secondary priority. This paper works to define
“correctness” since the use of both floating point arithmetic
(which can admit interpenetration for bodies in kissing
configurations even when constraints are solved to numerical
precision) and popular and fast rigid body dynamics time
stepping techniques (which explicitly allow interpenetration)
preclude a simple definition.

Fig. 1. Interpenetration violates an invariant of rigid bodies. Neverthe-
less, preventing interpenetration is technically challenging and constraint
stabilization approaches like [2] use the notion of signed distance to
minimize interpenetration. Every metric, including minimum translational
distance [5], can cause bodies to be pushed apart in a different direction
than they took while interpenetrating, as this illustration shows.

II. BACKGROUND

This section discusses time stepping methods for simu-
lating multi-rigid body dynamics with contact (Section II-
A); the relationship between vertices, edges, and faces in
polyhedra (Section II-B); and the minimum translational
distance metric (Section II-C).

A. Multi-body dynamics with contact

We now describe several topics pertinent to simulating
multi-rigid body dynamics with contact, namely the rigid
contact model, contact constraint stabilization, and time
stepping methods.



1) Rigid body dynamics with rigid contact: Rigid con-
tact can be modeled as differential variational inequalities
(DVI) [18] or as piecewise differential algebraic equations.
Rigid contact is conceptually straightforward; one need not
consider undeformed and deformed shapes, nor attempt to
approximate the interconnected nodes in a finite element
simulation with a computationally fast model. Literature on
the rigid contact model uses the distance function, often
denoted φ(.), extensively. Note that while φ should always
be non-negative for rigid contact, time stepping methods
like [19], [2] generally allow the distance between bodies
to become negative—to be corrected using constraint sta-
bilization, as will be discussed below—for computational
efficiency. In such cases, the output of φ(.) is required
to be positive if two rigid bodies are separated, zero if
they are in a kissing configuration, and negative if they
are interpenetrating. In addition, φ(.) should decrease as the
Euclidean distance between two disjoint bodies decreases,
as disjoint bodies come into contact or intersect, or as
intersecting bodies interpenetrate to a greater degree (we
leave the meaning of “degree” nebulous at this point in the
discussion). For the purposes of this paper, we focus upon
such time stepping methods, which precludes tracking the
direction that the bodies have interpenetrated. Whether the
ability of time stepping methods to ignore exact event time
finding compensates for the additional computation that is
required to compute the direction to separate interpenetrating
bodies will be left for future work.

2) Contact constraint stabilization: One challenge with
time stepping approaches is how to separate interpenetrating
bodies; although the rigid body model precludes interpenetra-
tion, existing approaches for modeling rigid body dynamics
are generally unable to maintain this invariant (a separate
issue is whether it is better to avoid attempting to maintain
this invariant, as alluded to in Section II-A.1). Standard time
stepping based simulation approaches must use constraint
stabilization methods to correct interpenetration. Conver-
gence proofs for DVI-based time stepping approaches with
constraint stabilization typically assume the existence of
a continuously differentiable signed distance function (see,
e.g., [2]).

3) Time stepping equations: Typical time stepping im-
plements formulate the problem of simulating rigid body
dynamics with rigid contact and Coulomb friction as a
solvable mixed linear complementarity problem (MLCP) [6]:
M −NT −DT 0
N 0 0 0
D 0 0 E
0 µ −ET 0



v(t+∆t)
fN
fD
λ

+


−k
1 φ

∆t
0
0

 =


0
wN
wD
wλ


(1)

fN ≥ 0,wN ≥ 0,fN
TwN = 0 (2)

fD ≥ 0,wD ≥ 0,fD
TwD = 0 (3)

fλ ≥ λ,wλ ≥ 0,fλ
Twλ = 0 (4)

where ∆t is the time increment to step forward, v is the
vector of generalized velocities, k ≡ Mv(t) + ∆tfext(t),

fN ≥ 0 is the vector of compressive contact forces (applied
along the contact normals), fD is the vector of frictional
contact forces, λ acts similarly to slack variables in linear
programming, M ∈ R`×` is the generalized inertia matrix (`
is the dimension of generalized coordinates), N ∈ Rr×` is
the Jacobian matrix that transforms generalized velocities to
relative speeds along the normals of the r contact points, D ∈
Rrq×` is the Jacobian matrix that transforms generalized
velocities to relative speeds along q spanning vectors of
each of the r contact points, µ ∈ Rr×r is a diagonal
matrix of Coulomb friction coefficients, and E ∈ Rrq×` is
a binary matrix. Finally, the wN , wD, and wλ variables are
required to formulate the above MLCP, but these variables
do not affect our focus and can be ignored in this paper.
The formulation above serves only to integrate velocity
variables to t+ ∆t (all other values are evaluated at time t).
Integrating position (coordinate) variables requires a more
sophisticated treatment due to the singularities inherent in
minimal representations of 3D orientation; [13] is one work
that succinctly describes how to address this problem.

Finally, we refer reader to other sources for better under-
standing of time stepping equations and approaches, includ-
ing [21], [19], [20], [12], [11]. We present the time stepping
equations above to allow the reader to make the connection
between the r points of contact (used to form N and D) that
our present work focuses upon determining and the value of
the signed distance function φ(.) at time t.

B. Polyhedral features

The Descartes-Euler polyhedral formula provides a rela-
tionship between the number of vertices (V ), edges (E), and
faces (F ) of a polyhedron.

V + F − E = 2 (5)

This paper leverages this relationship to reason about asymp-
totic time complexity of polyhedral features, rather than
considering numbers of vertices, edges, and faces separately.
The formula applies to all convex polyhedra and many non-
convex polyhedra as well. We assume each polyhedron input
to any algorithm referenced in this paper contains n features.

C. Minimum translational distance

There exist a number of metrics for degree of rigid
body interpenetration. One of the most popular, judging
by citations in literature, is minimum translational distance
(MTLD). MTLD is the minimum Euclidean distance a pair
of polyhedra must be translated in Cartesian space so that
the polyhedra are kissing (i.e., the polyhedra are intersecting,
but no feature of either polyhedron lies strictly inside the
other). The fastest algorithms for computing MTLD on
convex polyhedra currently run in quadratic time in the best
and worst cases [7]. Practical implementations based on the
Separating Axis Theorem and the Minkowski “difference”
exhibit slightly higher asymptotic complexity (O(n2 lg n)
and O(n2 lg n2), respectively).

The Expanding Polytope Algorithm (EPA), a third algo-
rithm that operates on the Minkowski-difference, uses the



output of the GJK algorithm [8] to compute the closest
point on the Minkowski difference polytope to the origin.
Such closest points can be used to determine both the
MTLD and the direction of translation that yields MTLD as
byproducts [23]. It is not clear how, or even if, the algorithm
improves on the time complexity of explicitly constructing
the Minkowski difference polytope (O(n2 lg n2), as stated
above). We are unaware of a peer reviewed source that estab-
lishes time complexity, proof of termination, or correctness
for EPA. Web searches readily uncover the challenge of
finding or developing robust GJK and EPA implementations.

III. QUESTIONS

A. How should contact points be selected?

Existing algorithms for computing contact forces presume
a number of discrete point samples are selected from the
contact manifold (in the case when the contact manifold does
not correspond to a single point). As we will discuss, the use
of point samples does not necessarily imply loss of solution
accuracy. We assume for now that the surface normal is
known.

The combination of the rigid contact model and the
Coulomb friction model has long been known to be subject
to indeterminism [14] for rigid bodies contacting simultane-
ously at many points. It is currently unknown whether these
indeterminate configurations—for which multiple, equally
valid possible contact wrenches exist—can result in non-
unique accelerations. If the accelerations are unique, then
providing an increasingly dense sampling of the contact
manifold would not generally yield an increase in solu-
tion accuracy. While unique accelerations implies additional
sampling would be inefficient, non-unique solutions would
point to larger problems: solutions can not be efficiently
enumerated (2O(n) possible solutions to a complementarity
problem with n variables might exist [6], [3]), so one might
be resigned to selecting an arbitrary solution.

With that caveat in mind, selecting an insufficient number
of samples can be problematic for simulation. Using a single
point to represent the surface between two cubes in face/face
contact could possibly lead to interpenetration. Therefore, we
suggest requiring that the point samples be chosen such
that, if the projections of the bodies’ relative velocity
along the contact normal (n̂) are non-negative at all
point contact samples, the time derivative of the signed
distance between the bodies will be non-negative. Here, as
elsewhere in the paper, we use the convention that a positive
value of the projection of the relative velocity onto the
contact normal indicates impending separation (and therefore
that a negative value indicates impending interpenetration).
The sign aspects will follow from the convention, to be
discussed in Section III-B, that the contact normal points
from Body B to Body A (these body labels will be used
further below). For the ensuing discussion, we also assume
that the rigid bodies are in “kissing” contact, meaning that the
signed distance between the two bodies is zero. Representing

the statement in boldface above mathematically yields:

φ̇ ≥ 0 if n̂Tvpi
≥ 0,∀i (6)

where

vpi ≡ ẋA − ẋB + ωA × (pi − xA)− ωB × (pi − xB)
(7)

and pi is the ith point of contact, ẋ is the linear velocity
of a body’s center-of-mass, and ω is a body’s angular
velocity. For convex polyhedra, the boldfaced requirement
is straightforward to meet. The intersection between the
two polyhedra will be convex [16], so—by convexity—
if the relative velocities at all vertices of the intersection,
projected along the surface normal, are all non-negative, the
relative velocity at any point of the intersection projected
along the surface normal must also be non-negative. In other
words, the boldface requirement above can be met for convex
polyhedra by selecting contact samples from the vertices of
the intersection.

For rigid contact, point samples should only be generated
for rigid bodies that are in kissing contact (i.e., φ = 0).
Floating point arithmetic makes identifying such a condition
exactly generally infeasible. Instead, we consider the case of
approximately contacting bodies, i.e., |φ| ≤ ε (where ε� 1),
meaning that bodies are either disjoint or interpenetrating. In
both cases, we must translate, rotate, or translate and rotate
one or both bodies until they are in kissing contact. Contact
points can then be sampled as already described above.
Exactly how the bodies should be translated or rotated is not
clear, particularly as the target kissing configuration would be
unknown (implied by Figure 1). There is no obvious metric
that should be optimized either: for example, moving the
bodies along the path that minimizes squared work is not
generally correct, which can be seen by examining the case
where the velocities of the rigid bodies are initially zero
(which would allow any ending configuration to be chosen,
as long the velocities were to remain zero). Since no path
is necessarily “right”, we use the surface normal (with its
determination described in the following section) to translate
the bodies apart/together. We hereafter denote −δ (and δ)
to be the non-negative distance that the bodies should be
translated apart (and together, respectively) to yield a kissing
configuration.

B. How should the surface normal be selected?

This section will refer collectively to the vector between
two closest features on a pair of disjoint bodies, the vector
normal to the intersecting surface between kissing bodies,
and the vector pointing along the direction that two inter-
secting bodies (with non-zero intersecting volume) should
be pushed apart as the surface normal. We assume that this
vector points toward Body A.

Following the discussion in Section III-A, there is not a
“correct” surface normal for bodies that are not kissing but
are sufficiently close (or are intersecting) to be considered
to be contacting. Even when polyhedral bodies are kissing
and thus cases of disjoint and intersecting configurations



(a) configuration that drives the
bodies to the local minimum

(b) configuration at the local min-
imum

Fig. 2. An example of how improper surface normal selection can fail to
give the desired result. Each diagram shows two rigid bodies, both boxes.
Using the procedure described in [10], the Minkowski sum of a circle and
each line segment) from the larger box are computed and depicted in dotted
stroke. [10] indicates that the surface normals are selected as shown with
the red arrows. Selecting the surface normals in this way causes the boxes
in (a) to move to an incorrect, interlocking configuration (b) from which
separation would not be possible: the arrows cause all relative movement to
be cancelled. Without lack of generality, we use 2D for illustrative purposes
and omit the Minkowski sum for the smaller box.

can be ignored, the contact normal will not be uniquely
defined in cases of vertex-vertex, vertex-edge, or parallel
edge-edge contact. This particular issue is described further
and addressed in [24], though it appears that obtaining robust,
fast solutions to such scenarios remains an open problem.
This paper and our software implementations avoid this
issue for bodies in kissing contact by returning no result
in that case; in other words, we allow (generally small)
interpenetration to occur in these expectedly rare cases, and
rely upon constraint stabilization techniques to minimize that
interpenetration.

Challenges aside, the selection of a “good” surface normal
is important to keep simulations from exhibiting unrealistic
behavior, like bodies passing through one another or becom-
ing locked together. We can specify two necessary conditions
for selecting the surface normal for contacting rigid bodies.

Necessary condition: The surface normal must point in
a direction n̂, such that in the limit of translation s → 0
along sn̂ and −sn̂, respectively, the time derivative of signed
distance between the two bodies is positive.

Informally, a small translation along n̂ and −n̂ must
increase the signed distance between the two bodies; alter-
natively, it should be evident that for any sufficiently large
translation, the signed distance between two bodies will be
positive. Procedures that do not respect this condition are
prone to trapping the bodies in local minima; for exam-
ple [10] can generate the problem depicted in Figure 2
because it does not use a global measure of interpenetration.

For bodies with convex geometries, the necessary condi-
tion points to a simple possible choice of surface normal se-
lection: the vector from the center-of-mass of Body B to the
center-of-mass of Body A. This selection appears physically
plausible (a qualitative goal advocated by Barzel et al. [4])
but may result in the appearance of artifacts when a contact-
ing body is particularly long, as Figure 3 depicts.

For disjoint bodies, a candidate for the surface normal that
is nearly as fast to compute is the vector pointing along the

closest points between the two closest features. For sake of
precision, we define a pair of closest features as the most
general pair of { vertices, edges, faces }; for example, if
two polyhedra are equally close at multiple points along two
edges, and one pair of elements from this set includes two
vertices, the pair of closest features should be edge-edge. As
will be discussed in Section IV-A, computing closest features
for disjoint convex polyhedra can be performed in “near”
constant time [14]. For intersecting bodies, an analogous
choice for the surface normal is the direction of minimum
translational distance. The asymptotic time complexity for
computing MTLD is much greater: the current best algo-
rithm runs in time O(m

3
4 +εn

3
4 +ε +m1+ε + n1+ε) for some

ε > 0 [1]. Consistent with the discussion in Section III-A, we
again note that there is no “right” choice of surface normal
selection for disjoint or interpenetrating bodies with rigid
contact.

Fig. 3. A small “ball” (spherical truncated icosahedron) interpenetrating a
long box. The points of intersection with the sphere on the box are drawn
with dotted stroke. Centers-of-mass of both objects are depicted. If the
surface normal is chosen as described in Section III-B—pushing the centers-
of-mass apart, as depicted—the sphere will counterintuitively not be pushed
in a direction normal to the face of the box that the sphere is intersecting.

Necessary condition: The surface normal should be piece-
wise continuous with respect to the bodies’ configurations.

While this continuity requirement is weaker than that
desired for proving time stepping convergence in [9], better
than piecewise continuity is not achievable since the geome-
tries are polyhedral: surface normals may change discontinu-
ously as the contact surface between bodies transitions from
one face to another. Accurate solutions to the differential
algebraic equations for rigid body dynamics with rigid
contact can be obtained only by switching constraints as the
surface normal changes; such accurate solutions will not be
possible if the surface normal is not piecewise continuous.

IV. TECHNICAL DETAILS
A. Querying whether polyhedra are intersecting

While it is possible to use one algorithm to compute both
Euclidean distance and minimum translational distance, it is
computationally more efficient to use separate algorithms for
the two cases. For convex polyhedra, we use V-CLIP [15],
which takes advantage of convexity. V-CLIP runs in worst-
case linear time of the total features of the queried polyhedra
and can leverage temporal coherence between simulation
steps to attain near constant time performance [15].

B. Computing closest features for disjoint polyhedra

V-CLIP computes a pair of closest features for disjoint
polyhedra (V-CLIP’s reported “closest features” are mean-



ingless for intersecting polyhedra). V-CLIP can return ver-
tex/vertex, vertex/edge, vertex/face, and edge/edge types;
edge/face and face/face cases are not optional return types
(the features returned correspond to the Voronoi region
iterates [15]: V-CLIP does not return the most general pair of
features). For disjoint polyhedra, two pieces of information
can be determined by examining the closest features: d, a
vector from the feature on the second polyhedron to the
feature on the first polyhedron, and δ = ||d||, i.e., the
Euclidean distance.

Algorithm 1 PROJECT(P, d̂) Determines the two vertices
from polyhedron P that yield the minimum and maximal
distance along direction d̂. Returns the minimum and maxi-
mum projections (dotmin and dotmax) as well as the vertices
that yield these extrema (pmin and pmax).

1: pmin ← NIL
2: pmax ← NIL
3: dotmin ←∞
4: dotmax ← −∞
5: V ← all vertices from P
6: for vi ∈ V do
7: y ← vTi d̂
8: if y < dotmin then
9: pmin ← vi

10: dotmin ← y

11: if y > dotmax then
12: pmax ← vi
13: dotmax ← y

14: return {dotmin, dotmax,p
min,pmax}

C. Computing MTLD (for intersecting bodies)

For computing the minimum translational distance be-
tween bodies with convex geometries, we use the separating
axis theorem (SAT), which requires computing the projection
of the bodies onto a quadratic number of axes (a normal
from each face of both polyhedra, and the cross products
of each edge from one polyhedron and each edge from
the other). O(n2 lg n) operations are required, if using a
Dobkin-Kirkpatrick hierarchy data structure to speed ex-
tremal distance queries (O(n2) queries, each at a cost of
O(lg n)). The axis that yields the minimum absolute overlap
of the projections of the two polyhedra’s vertices is the
direction that provides the MTLD, and the absolute overlap
is the MTLD, −δ. The SAT-based process is described in
Algorithms 1 and 2. Multiple candidate normals that do not
point in the same direction indicate that an indeterminate
normal has been located (refer back to §III-B).

D. Computing the contact plane (for kissing bodies)

For a pair of kissing rigid bodies, we define the contact
plane as the plane defined by the surface normal and a
point inside or on both polyhedra. For disjoint polyhedra, the
plane will be defined arbitrarily by a point halfway through
points on closest features (it would be equally “correct”

Algorithm 2 FIND-MTLD Uses the Separating Axis Theo-
rem to find the minimum translational distance between two
intersecting convex polyhedra, A and B. Returns the negated
minimum translational distance σ (i.e., a non-positive num-
ber), the vector that yields this minimum distance (n̂), and
scalar d from the equation of the contact plane xTn̂ = d.
This algorithm does not attempt to identify indeterminate
surface normals.

1: N̂A ← set of face normals from A
2: N̂B ← set of face normals from B
3: N̂E ← cross-products of all edges from A with all edges

from B . Products must be normalized (or removed if
0)

4: V ← N̂A ∪ N̂B ∪ N̂E
5: minoverlap ←∞
6: minaxis =

[
0 0 0

]T
7: pA ← NIL
8: pB ← NIL
9: for v ∈ V do

10: {minA,maxA,pmin
A ,pmax

A } ← PROJECT(A, v)
11: {minB ,maxB ,pmin

B ,pmax
B } ← PROJECT(B, v)

12: o1 ← maxA −minB
13: o2 ← maxB −minA
14: if o1 < 0 or o2 < 0 then
15: return { ePolyhedraDisjoint, NIL, NIL, NIL }
16: if min (o1, o2) > minoverlap then
17: continue
18: if o1 < o2 then
19: minoverlap ← o1

20: minaxis ← −v
21: pA ← pmax

A

22: pB ← pmin
B

23: else
24: minoverlap ← o2

25: minaxis ← v
26: pA ← pmin

A

27: pB ← pmax
B

28: n̂← minaxis
29: σ ← −minoverlap
30: d← 1

2 n̂(pA + pB)
31: return {eSuccess, n̂, σ, d}

to define the plane by a point on the closest feature of
one of the polyhedra). For intersecting polyhedra, the plane
will be defined by vertices that yield maximum/minimum
projections (pA and pB from Algorithm 2).

E. Computing the contact manifold

After the two bodies have been translated along d by
distance δ, the bodies will now be in a kissing configuration
and contact features can be computed. The set of vertices
from each polyhedron touching the contact plane can now be
computed using an O(lg n) operation, again using extremal
distance queries with a Dobkin-Kirkpatrick hierarchy. Each
set of vertices (from each polyhedron) lying on the contact



Fig. 4. Depiction of the contact plane for two rigid bodies in a kissing
contact configuration. The contact plane is coplanar with the bottom face
of the box; the top edge of the prism also lies on the plane.

plane can represent a single point (a 0-simplex), an edge
(a 1-simplex), or a convex polygon (a simplicial 2-complex,
which we henceforth refer to for brevity as a simplex). The
intersection between the two simplices represents the contact
manifold. We now describe how we address two numerical
challenges.

1) Numerical issue: none of a polyhedron’s vertices lie on
the contact plane after the polyhedron has been translated:
We know that at least one of the polyhedron’s vertices should
lie on the contact plane. The solution to this problem is to
reset the floating point zero tolerance to the distance of the
vertex closest to the contact plane and redetermine the set of
points from the polyhedron that lie within this distance.

2) Numerical issue: there is no intersection between the
polyhedral features determined to be lying on the contact
plane: It is conceivable that the geometric intersection of
the two siimplices results in the empty set. If the bodies
were disjoint, it is evident that translating them to a kissing
configuration along the vector between their closest points
results in a non-empty intersection, at least in theory. If
bodies are intersecting, then translating them to a kissing
configuration along the vector of minimum translational
distance should also result in a non-empty intersection. Our
numerical approach thus first attempts to intersect the two
simplices. If the intersection is empty, we select a point
halfway between the closest points on the two simplices.

3) Implementation details: For polygon-polygon intersec-
tions, we project all points to the contact plane and then
use floating-point versions of algorithms from [17]. For
all other operations, we use implementations from http:
//www.geometrictools.com.

V. EXPERIMENTS
Our experiments can be reproduced using code in

Moby, available from https://github.com/
PositronicsLab/Moby, commit 5837e22. Our
implementation of SAT does not use the Dobkin-Kirkpatrick
hierarchy: asymptotic time complexity will thus be O(n3)
(rather than the O(n2 lg n) reported above). We have
successfully tested the algorithms in this paper on numerous
virtual interactions between convex polyhedra, including
cases anecdotally considered to be challenging (like stacking
identical boxes) in addition to experiments described below.

A. Unit tests

We developed unit tests for our software using two ran-
domly placed convex polyhedra. The signed distance used in

the unit test was computed using the Minkowski difference:
we computed the minimum distance from the origin to one
of the faces of the explicitly constructed Minkowski polyhe-
dron. If the origin was found to be inside the Minkowski
polyhedron, we negated this distance. We compared this
distance to the separating axis-test based approach and to
libccd, a stable (in a software development sense) library
that implements the GJK and EPA algorithms. For two
2× 2× 2 boxes, we noted the results in Table I.

B. Verification-based tests

We also propose two benchmark problems for multi-
rigid body verification that stress contact between convex
polyhedra. The first benchmark is a sphere spinning on
the face of an immobile box. The second benchmark is
a sphere rolling on top of another, immobile sphere. 2D
versions of these benchmarks are depicted in Figure 5.
The benchmarks possess the following advantages: () the
solution can be computed readily and reliably for the limiting
case of zero area tessellation (i.e., true spheres), for any
size spheres; () the geometry dimensions can be scaled
arbitrarily, stressing numerical tolerances; and () inaccurate
solutions cause energy loss, an easily perceived phenomenon.

We tested the spinning sphere example using 50-vertex
and 100-vertex spheres. The 50-vertex sphere abruptly stops
spinning after approximately 8 ms of virtual time. The 100-
vertex sphere maintains kinetic energy perfectly through at
least five seconds of virtual time. We note that setting the
time step size correctly (∆t = 0.001 or so) is key to getting
this example to work properly. With ∆t = 0.01, even a
2,000-vertex sphere does not conserve energy.

We tested the two-spheres scenario with unit radius tes-
sellated spheres and were unable to attain a solution that
conserves energy. We attempted spheres with 50, 100, 200,
and 1,000 vertices; using somewhat more vertices (2,000)
caused the simulation to run intractably slowly. We present
this particular benchmark to the multi-rigid body simulation
community for further study.

C. Profiling

We profiled CPU operations to identify timing “hot spots”
on a box spinning on another box, the spinning sphere-box,
and the two tessellated spheres. For the spinning box, the
simulation spent 16.2% of time on contact determination and
47.7% of time on V-CLIP (the majority of remaining time
went to solving the MLCP). For the spinning sphere/box
scenario (the sphere contained 200 vertices), the simulation
spent 75.2% of time on contact determination (primarily
SAT) and 26.8% of time on V-CLIP. For the two spheres
scenario (200 vertex spheres), the simulation spent 94.8% of
time on contact determination (primarily SAT) and 1.7% of
time on V-CLIP. Table II details raw simulation times.

VI. CONCLUSION

We have suggested necessary conditions for contact nor-
mals and contact point sample selection, such that numerical
correctness to the prescribed models can be attained. While



TABLE I
ERROR IN SIGNED DISTANCE FROM THAT REPORTED BY THE MINKOWSKI-DIFFERENCE APPROACH ON TWO 2× 2× 2 BOXES (THE UNIT TEST)

Algorithm Minimum error Maximum error Mean error Error standard deviation
GJK+EPA (libccd) 2.693×10−6 0.608937 0.0518467 0.1311

SAT (Moby) 0.000000 2.66454×10−15 3.353×10−16 4.413×10−16

TABLE II
MEAN TIME TO COMPUTE A SIMULATION ITERATION (2.7 GHZ

MACBOOK PRO)

Scenario Pairwise vertices Time per iteration
Spinning box 8× 8 1.3 ms

Spinning sphere 8× 200 18 ms
Rolling spheres 200× 200 370 ms

Fig. 5. 2D depictions of the 3D spinning sphere (left) and rolling sphere
(right) scenarios. The height of the box and radius of the bottom sphere are
variable to facilitate testing with extreme differences in scale. In the spinning
sphere example, the box is immobile. In the rolling sphere scenario, both
the sides of the open-top box and the bottom sphere are immobile. A no-
slip frictional model is applied between the sphere and the box (left) and
between the two spheres (right), and frictionless contact is modeled between
the top sphere and the sides of the box (right). Each simulation begins with
the mobile sphere rotating with some angular velocity. In the limiting case
of idealized spheres, energy should be conserved.

we have shown that our approach using the SAT produces
answers identical to those produced by the Minkowski differ-
ence, we have not proven that the direction yielding MTLD
is piecewise continuous; it should be evident that translat-
ing polyhedra instantaneously along this direction yields a
positive change in signed distance between the polyhedra.
Our approach is numerically robust but not fast. We have
provided a unit test and two verification benchmarks so that
future research can test the speed of accurate approaches.

ACKNOWLEDGMENT

We thank Sean Curtis and Michael Sherman at TRI for
providing significant constructive feedback. This work was
funded by a GWU Undergraduate Research Fellowship for
Bjoern Cheng Yi and ARO grant W911NF-16-1-0118.

REFERENCES

[1] P. K. Agarwal, L. J. Guibas, S. Har-Peled, A. Rabinovitch, and
M. Sharir. Penetration depth of two convex polytopes in 3D. Nord. J.
Comput., 7(3):227–240, 2000.

[2] M. Anitescu and G. D. Hart. A constraint-stabilized time-stepping ap-
proach for rigid multibody dynamics with joints, contacts, and friction.
Intl. Journal for Numerical Methods in Engineering, 60(14):2335–
2371, 2004.

[3] D. Baraff. Fast contact force computation for nonpenetrating rigid
bodies. In Proc. of SIGGRAPH, Orlando, FL, July 1994.

[4] R. Barzel, J. F. Hughes, and D. N. Wood. Plausible motion simulation
for computer graphics animation. In R. Boulic and G. Hégron, editors,
Computer Animation and Simulation (Proc. Eurographics Workshop),
pages 183–197, 1996.

[5] S. A. Cameron and R. Culley. Determining the minimum translational
distance between two convex polyhedra. In Proc. IEEE Intl. Conf.
Robotics Automation (ICRA), pages 591–596, 1986.

[6] R. W. Cottle, J.-S. Pang, and R. Stone. The Linear Complementarity
Problem. Academic Press, Boston, 1992.

[7] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri. Computing
the intersection-depth of polyhedra. Algorithmica, 9:518–533, 1993.

[8] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for
computing the distance between complex objects in three-dimensional
space. IEEE J. of Robotics and Automation, 4(2):193–203, April 1988.

[9] S. Hart, R. Grupen, and D. Jensen. A relational representation for
generalized knowledge in robotic tasks. Technical Report 04-101,
Computer Science Dept, Univ. of Massachusetts Amherst, 2004.

[10] K. Hauser. Robust contact generation for robot simulation with
unstructured meshes. In Proc. Intl. Symp. Robotics Research (ISRR),
2013.

[11] C. Lacoursière. Regularized, stabilized, variational methods for multi-
bodies. In Proc. of Scandinavian Conf. on Simulation and Modeling
(SIMS), Oct, 2007.

[12] J. E. Lloyd. Fast implementation of Lemke’s algorithm for rigid
body contact simulation. In Proc. of the IEEE Conf. on Robotics
and Automation (ICRA), pages 4538–4543, 2005.

[13] A. T. Miller and H. I. Christensen. Implementation of multi-rigid-body
dynamics within a robotic grasping simulator. In Proc. of the IEEE
Intl. Conf. on Robotics and Automation (ICRA), pages 2262–2268,
Sept 2003.

[14] B. Mirtich. Impulse-based Dynamic Simulation of Rigid Body Systems.
PhD thesis, University of California, Berkeley, 1996.

[15] B. Mirtich. V-Clip: fast and robust polyhedral collision detection.
ACM Trans. on Graphics, 17(3):177–208, 1998.

[16] D. E. Muller and F. P. Preparata. Finding the intersection of two
convex polyhedra. Theoretical Computer Science, 7:217–236, 1978.

[17] J. O’Rourke. Computational Geometry in C. Cambridge University
Press, second edition, 2001.

[18] J.-S. Pang and D. E. Stewart. Differential variational inequalities.
Math. Program., Ser. A, 113:345–424, 2008.

[19] D. Stewart and J. C. Trinkle. An implicit time-stepping scheme for
rigid body dynamics with Coulomb friction. In Proc. of the IEEE Intl.
Conf. on Robotics and Automation (ICRA), San Francisco, CA, April
2000.

[20] D. E. Stewart. Rigid-body dynamics with friction and impact. SIAM
Review, 42(1):3–39, Mar 2000.

[21] D. E. Stewart and J. C. Trinkle. An implicit time-stepping scheme for
rigid body dynamics with inelastic collisions and Coulomb friction.
Intl. J. Numerical Methods in Engineering, 39(15):2673–2691, 1996.

[22] J. R. Taylor, E. M. Drumwright, and J. Hsu. Analysis of grasping
failures in multi-rigid body simulations. In Proc. Intl. Conf. on
Simulation, Modeling, and Programming for Autonomous Robots
(SIMPAR), San Francisco, CA, 2016.

[23] G. van den Bergen. Proximity queries and penetration depth compu-
tation on 3D game objects. In Proc. Game Developer’s Conference,
2001.

[24] J. Williams, Y. Lu, and J. Trinkle. A geometrically accurate contact
model for polytopes in multi-rigid-body simulation. ASME J. Compu-
tational and Nonlinear Dynamics, 2016.


