
Interactive, Iterative Robot Design

Bradley Canaday1, Samuel Zapolsky2 and Evan Drumwright3

Abstract— Consider how a new robot is designed. Starting
from a relative size (e.g., nanometer, centimeter, meter), the
roboticist picks a morphological type (manipulator, quadruped,
biped), and then uses intuition, experience, biological inspira-
tion, or some combination of the three to select kinematic,
dynamic, and geometric parameters. The designer then con-
ducts preliminary checks to see whether the robot can satisfy
its intended function: manipulation, locomotion, or both. The
designer then iteratively adjusts the physical parameters and
conducts checks using sample tasks, presumably until conver-
gence is reached. This paper describes a means to automate
part of this approach by combining interactive elements with
powerful tools that use multi-rigid body simulation.

We describe and demonstrate a virtual testing phase that first
determines whether the physically situated robot would serve
its intended purpose. If the robot is not capable of performing
its target task, the virtual testing phase can determine which
of the robot’s morphological parameters should be modified in
order to do so. The process keeps a human in the loop to help
account for hard to quantify design aspects like appearance,
quirks of the fabrication procedure (i.e., laser cutting, milling,
3D printing processes), or even expert knowledge. We intend
for the described approach to be used as an interactive tool
that gives a robot designer feedback on what morphological
parameters are likely to limit the performance of a robot and
how to modify the design to fix or offset such limitations. We
demonstrate that, through simulated prototyping and testing
methods, we can improve a robot design and iteratively locate
morphological parameters that make efficient use of available
hardware.

I. INTRODUCTION

Efficiently designing robots that interact physically with
their environments through contact, like robots that walk
and manipulate, is an open problem. Current physical design
procedures of such robots requires considerable expertise
and is taught in few academic programs. This work aims to
improve this status quo using computed-aided engineering.

Our suppositions are that the robot’s control policy is
given (we use Pacer [21], a generic legged locomotion gait
planning and control system, for that purpose in this work)
and that the robot designer starts from a morphological tem-
plate (i.e., a kinematic, dynamic, and geometric “sketch”).
This latter assumption is not a particularly stringent one,
as roboticists copy each others’ designs (the first author
borrowed from an existing working design by the second
author in this paper) and borrow others from nature.

1Bradley Canaday is an undergraduate researcher at the Computer
Science Dept., George Washington University, Washington, DC, USA
bradcanaday@gwu.edu

2Samuel Zapolsky is a Ph.D. student at the Computer Sci-
ence Dept., George Washington University, Washington, DC, USA
samzapo@gwu.edu

3Evan Drumwright is faculty in the Computer Science Dept., George
Washington University, Washington, DC, USA drum@gwu.edu

We wish to optimize a robot’s model within simulation to
maximize its performance on a task1 given known hardware
constraints. We present an approach that updates a robot’s
morphological parameters to improve the robot’s ability to
perform an intended task. We demonstrate that the predicted
improvements made in our virtual framework translate to im-
proved task performance during physically situated testing.

Toward the purpose of computer aided robot design, one
could imagine designing an expert system—or the modern
extensions of them, deep neural networks—to optimize robot
designs; these paradigms either require (in the case of expert
systems) or greatly benefit from (in the case of deep neural
networks) significant domain knowledge. Another possibility
is using non-convex optimization algorithms to optimize gait
and morphological parameters, as done in [6]. This kind
of automatic approach can clearly be successful, though
removing humans from the design process is not necessarily
beneficial: it is challenging to select objective functions that
capture secondary criteria and do not result in unintended
side effects. Additionally, synthesis of ad hoc solutions have
to date proven far superior, at least with respect to robot
locomotion, to tabula rasa optimization; see [18], which
requires priming and shaping the optimization, and [11], in
which an ad hoc robot design and locomotion control system
yields high performance.

We began this research from the following observation.
For a given task there is a volume of operational space
(which for our purposes include poses in 3D, wrenches, and
twists) that the robot must access to perform that task. If a
robot is unable to perform that task, then some operational
space states defined in the task are inaccessible to the robot
due to limiting factors acting on dynamic and kinematic sys-
tem (e.g., maximum torque, kinematic reachability limits).
We find that the design of a robot morphology can be guided
toward a set of model parameters that mitigates the effect
that these limits have on the robot’s task performance. We
propose and demonstrate an interactive robot optimization
process that informs a designer how to update a models
parameters and steer away from quantifiable constraints
(i.e., actuator torque and velocity limits) while permitting
the designer to modify the suggested update to incorporate
expert, domain specific knowledge that is harder to quantify
(e.g., fabrication constraints, traction requirements, size and
weight limits, or aesthetic concerns).

The approach we present does not seek to optimize an ob-

1In the context of this work, we informally define a task as requiring the
robot to effect a desired state (or one of a set of desired states) for both
itself and its environment; this definition clearly lacks consideration of time
and path dependence, among other factors.



jective function. Instead, this method iteratively translates the
region of operational space accessible to the robot to satisfy a
prescribed task. Once a task lies within the feasible region of
the constraints imposed by a robot’s provided hardware, the
process is complete. This approach thereby allows adjusting
a robot’s modeling parameters to achieve a specific task. We
demonstrate the performance of the approach by generating
robot designs from both “supervised” (human in-the-loop)
and fully automated processes and then compare their relative
performance with respect to a simple locomotion task. We
perform experiments with two fabricated robots that are 3D
printed and match the morphological and mass parameters
of the resulting designs.

II. BACKGROUND AND RELATED WORK

This paper builds upon work in evolutionary robotics,
physical simulation, rapid prototyping, and operational space
control by providing an interactive robot design suite toward
improving a robot’s morphology.

A. Evolutionary robotics

Evolutionary robotics seeks to implement a morphology
exploration strategy of iteratively modifying a robot’s model
by optimizing over a fitness function [13]. Constraints on
robot model limits can be incorporated into the problem in
two ways; () Only generate feasible offspring so these limits
are never violated; () Penalize infeasible offspring propor-
tionally to their infeasibility. The latter approach allows for a
larger region to explore, possibly avoiding falling into local
minima. Some evolutionary design work to create systems
in which both the morphology and control scheme of the
robot are modified following a genetic algorithm approach to
develop robots based on geometric primitives to accomplish
simple tasks such as trotting or pushing an object [3], [19].

B. Morphological computation

The virtual creatures generated through a genetic algo-
rithmic approach (see [1]) shed light on a deeper insight
that morphological design may have just as much sway on
certain aspects of control as modifications to the control
system itself. A robot’s morphology affect the stability and
performance of its locomotion system [16].

C. Prototyping

Rapid prototyping of 3D-printable robots has found some
success in previous work [12] with robots having a variety
of morphologies and leg counts being successfully built and
tested using the same base software to determine footfall
pattern. A base robot was provided for users to edit to
their liking in terms of shape and footfall patterns, and then
transformed from the simple inputs into usable robots and
gaits by the program from the user inputs.

D. Rigid body & nonsmooth mechanics

This work considers robot dynamics that are well mod-
eled by rigid bodies and rigid or nearly rigid contact. The
approach is not necessarily predicated on these assump-
tions. Deformable body simulations albeit much slower will

provide a more thorough appraisal of a robotic system. In
addition to the challenges of analyzing nonlinear dynamics
(of multi-rigid body systems), the approach discussed in this
paper requires consideration of nonsmooth mechanical sys-
tems [4], for which velocities can change discontinuously due
to impacts and even non-impacting contact with Coulomb
friction [20].

E. Locomotion

This work considers improving morphological designs of
a robot independently from the control system. This implies
that the operational space state and external forces remain
fixed while the morphological and dynamic design are im-
proved to consider interaction of the controlled mechanical
system with its environment.

Operational space control for locomoting systems allows
the robot to decouple the configuration of its morphology
from its end effector and base configurations [2]—assuming
all operational space goals are kinematically reachable. We
implement such a locomotion controller [21], which borrows
lessons in foot placement and simple trotting behavior from
[8], and admits a similar parameterization to other gait
planning systems for quadrupedal robots [5], [9].

Though this transition to operational space may lead to
computationally difficult to handle redundancies in config-
uration space, these can be dealt with through careful use
of inverse kinematics [15], [17]. The quadrupedal robots
we focus on throughout this paper do not have redundant
actuation, but these considerations are important for many
walking robots.

III. APPROACH

Our idea relies upon adjusting a robot’s morphological
and dynamic properties using inverse kinematics and inverse
dynamics to map operational space velocities and forces
to generalized velocities and forces. The remainder of this
section introduces the concepts of the accessible operational
space (§III-A) and limit functions (§III-B), outlines the iter-
ative process (§III-C), and describes how model parameters
are adjusted to alter limit function outputs (§III-D).

A. Accessible operational space

Improving a robot’s actuation capabilities increases the
maximum operational space velocities and forces that the
robot can generate. If actuation is improved sufficiently,
then the robot might be able to perform all of the motion
requirements of an intended task. Kinematic reachability
limitations imposed by the robot’s morphology will remain
unchanged as a result of actuator modification. Figure 1a
shows an illustrative example of how actuators can increase
the magnitude of operational space velocities that the robot
can achieve.

Beyond actuator improvement (expanding the boundary
of the accessible volume of operational space), the model
of a robot can be modified to a similar effect (shifting
and deforming the accessible volume of operational space).
Model modifications such as adjusting the size of the base



(a) Actuator Modification
Bottom Left: A robot whose actuators are not suitable to perform the
target task will not fit the requirements of the task within its
capabilities (under the torque-speed curve).
Top Left: Increase the maximum torque τmax.
Bottom Right: Increase the maximum actuator velocity q̇max.
Top Right: Improving the maximum torque and maximum velocity
results in the robot being able to perform all required torques at each
desired actuator velocity of the task.

(b) Morphological Parameter Modification
Bottom Left: A robot whose actuators or morphology are not capable of
performing the task will not be able to perform the motions required by the task.
Top Left: Increasing leg length, foot radius, or foot friction will decrease the
actuator speed requirements of a task by providing the robot a larger lever or
greater reaction force when interacting with the environment.
Bottom Right: Decreasing leg length, foot radius, or foot friction will decrease
the actuator torque requirements of a task by providing the robot a smaller lever
or less reaction force when interacting with the environment.
Top Right: Improving robot morphology in a directed manner will allow the
robot to make the most of its actuator limitations, allowing it to perform the
motions required by the task.

Fig. 1: The requirements of a target task (shaded box) are sometimes outside the capabilities of the robot, bounded in this plot by the torque-speed curve
(under the curved line). Actuators (a) or morphological parameters (b) can be modified to increase the capabilities of the robot to fit a given task. If we
carefully update the robot’s morphological parameters, the robot might become capable of performing a target task, even with a fixed torque-speed curve.

link, decreasing leg lengths, and decreasing stride length
will transform the mapping between configuration and oper-
ational space for the model. Figure 1a provides an illustrative
example of how a robot’s model can be modified to transform
the accessible volume of operational space.

Of the robot modifications mentioned in Figures 1a and 1b,
we focus on implementing the latter. We modify modeling
parameters of the robot morphology while assuming fixed
actuation constraints (i.e., torque and speed limits).

Other limitations that are less apparent than the torque-
speed trade-off may be equally important when gauging the
capabilities of a robot. For example, a robot must avoid
front-back foot collisions at high locomotion speeds when
performing asymmetric gaits about the sagittal-plane (e.g.,
during walking and trotting). Similarly, mechanical designs
may impose limits on kinematic reachability, possibly pre-
cluding certain pick-and-place tasks.

B. Task-robot limit functions

We find that by observing how a limit function evolves in
relation to modeling parameters, we can steer the design of
a robot morphology toward a parameter setting that avoids
violating constraints without compromising task performance
by modifying the model parameters to steer away from quan-
tifiable constraints (also referred to as “limits”, hereafter).
If a specific constraint becomes “active” during the robot’s
virtual performance of the task, the process is halted and the
model is updated to avoid violating a constraint or to reduce
constraint violation.

We define a vector-valued limit function Φp :
Rnq×nv×nu → R, where p refers to the model parameters,
nq is the dimension of robot generalized coordinates, nv is
the dimension of robot generalized velocities, and nu is the
dimension of the controllable generalized forces) produces a
m-dimensional vector of unit-less “distances” represent how
close each constraint is to being exactly satisfied. The limit
functions depend on the robot’s state {q, q̇} and input u and
specify inequality constraints:

φp(q, q̇) ≥ 0 (1)

Note that we assume that spatial velocities (ẋ ∈ R6)
and generalized velocities (q̇ ∈ Rnv) are not equivalent to
the time derivatives of rigid body coordinates (ẋ ∈ R7)
and generalized coordinates (q̇ ∈ Rnq), respectively, as our
focus has been locomoting, underactuated robots and there
exists no physically meaningful, minimal representation of
orientation in 3D [10]. Implementation-wise, we represent
the 3D orientation of the robot’s “floating base” using
unit quaternions, the rotational velocity using a 3D angular
velocity vector, and convert between the two using linear
operations (see, e.g., [14]).

C. Process iteration

Because constraint violation might be rather large imme-
diately upon executing a difficult task with a novel robot
design, the process should be bootstrapped using an “easy”
version of the task. For a pick-and-place task, this may entail
starting with a lightweight object and slower movements;



simplifications are straightforward for locomotion where
lower velocity gaits are typically easier to perform.

Once the robot can successfully complete a simplified
version of the task, the user should repeat the process on an
incrementally harder version of the task. At each successive
model update, the configuration space trajectory is updated
to achieve the same operational space movement (a task
constraint). While the operational space trajectories of a task
(e.g., for the torso, foot, and hand) remain fixed throughout
the optimization process, the inverse kinematics solution for
each robot changes as the morphology evolves. Our software
tool physically simulates the robot, which is driven by an
inverse dynamics-based control policy with contact force
prediction, to determine the instantaneous actuator forces
necessary for the robot to follow the desired trajectory. See
Figure 2 for an illustration of this algorithm and its sub-
processes.

Fig. 2: The user will likely want to generate multiple pose sequences and
use them for testing. These sequences can be expanded as the robot begins
passing tests (e.g., after trotting is successful, we can move to running, while
retaining the sequence for trotting).

D. Adjusting model parameters to alter limit function out-
puts

Each model update of the optimization process requires
constructing a gradient for how each model parameter af-
fects each active limit function at the moment in the task
where a limit function first becomes active. Gradient vector
∇jΦmodel(i)(q, q̇,u) is computed using finite differencing (as
described in Figure 3) with respect to modeling parameter j
of m total parameters.

The limit gradients are concatenated to form a limit
Jacobian, JΦ, that describes the slope of the constraint-
parameter space at a specific point in state space (q, q̇) under
the current model parameters (pi).

J =
[
∇0Φpi(q, q̇,u) · · · ∇mΦpi(q, q̇,u)

]
The parameters to be included in the vector (pi) must be
chosen by the designer. This parametrization must be expres-
sive enough to generate a wide range of morphologies but
concise enough to preclude any easily rejected morphologies
and keep the finite differencing process fast. The gradient

Fig. 3: Jacobian generation flowchart.

descent direction −J†`, where † is the pseudo inversion
operator, yields an update direction to the robot modeling
parameters that should decrease the limit function violations
(` = Φpi

(q, q̇,u)). The current modeling parameters (pi)
can then be updated to those at the next iteration pi+1:

pi+1 = pi − αJ†`

for α � 1 (we currently tune α manually). The de-
signer incorporates expert knowledge into this tuning stage,
weighting the gradient update and perhaps making additional
modifications to the robot model. Specifically, a designer
is permitted to roll-back an update or apply either of two
changes repeatedly to the update: () zeroing any element
of the parameter update vector; () applying front-hind
symmetry to a specific parameter’s update.

E. Algorithmic correctness

There do not exist tractable algorithms for determining
whether one or more nonlinear inequality constraints (i.e.,
limit functions) is/are satisfiable over a discretization of a
continuous trajectory; this problem generally corresponds
to a non-convex optimization problem. In the absence of
a tractable approach to an optimal solution, we considered
several alternatives, including optimizing parameters over
the entire execution of a trajectory (somewhat similar to
trajectory optimization) and optimizing parameters over a
“window” sliding over the trajectory. We explored the latter
approach, since it was simpler, with the understanding that



this approach was liable to modify the parameters one way
at time ta during the trajectory execution only to revert
this change at time tb > ta. We did not encounter this
phenomenon but note that the user supervision would be
able to prevent such regressions.

IV. EXPERIMENTS

We perform a test of our interactive design framework and
then an experiment assessing the validity of our simulation
results against 3D printed robots. Our method focuses on, but
is not limited to, locomoting in a straight-line across a planar
environment. We optimized the morphological parameters
of a quadrupedal robot to perform a trot at a variable
forward velocity. This experiment attempted to adjust the
continuous geometric and mass parameters of the links of the
quadruped toward achieving the highest speed possible given
known actuator stall torque and velocity limits. We used the
described system to iteratively update the robot model to
increase its maximum trotting speed. We focused on trotting
because it is a highly dynamic, known challenging task that
requires a robot to make full use of its physical ability.

The first author used our working Links quadrupedal robot
(depicted in Figure 6) as a design template to create a new
quadrupedal robot platform, and used the design software to
adapt this design. After verification in simulation, we transfer
our changes to the physical robot and observe whether the
improvements made in simulation also result in better in situ
performance.

Fig. 4: Visualization of gait parameters used in our locomotion planner.

Parameter Value
forward velocity (goal) 50 cm/s
base offset (linear) {0, 0, 0.75× llongest,ULeg + llongest,LLeg}
base offset (angular) {0, 0, 0}
step height 1 cm
gait duration 0.3 s
length 2× lBase cm
width {1.1, 1.1} × wBase cm
liftoff {0.25, 0.75, 0.25, 0.75}
duty factor {0.6, 0.6, 0.6, 0.6}

TABLE I: Gait parameters used in the morphological optimization process.
The duty factor refers to the proportion of a gait cycle that a single foot
spends in stance phase. Other parameters are depicted in Figure 4.

A. Tasks

We simulated the quadruped locomoting with an initial
gait parameters shown in Table I. These values were chosen
as a generally functional set of parameters (based on our
experience) for a 16 cm tall quadruped. The virtual robot
uses a closed loop error-feedback controller (see Figure 5)
which accumulates feedback accelerations that are input to
a QP-based inverse dynamics controller with contact force
prediction [22]. Contact force prediction permits us to sim-
ulate the forces acting on the robot at individual time slices
of controlled locomotion. If we were to rely on an error-
feedback control scheme, the full actuation force required
for locomotion would be time-delayed and would thereby
hinder accurate limit evaluation.

Fig. 5: Block diagram of the controller utilized by the robot in simulation
during the model update process.

B. Morphological parameters

One simplification we made for our application assumes
that a locomoting robot will need to be symmetric across
the sagittal plane. Because we are likely to reject any robots
that are laterally asymmetric, our parameterization requires
adjusting only the modeling parameters of half of the robot
and reflecting the parameters to the other side when the
model is updated.

a) Complexity of topological updates: Adding joints
or links to the robot’s topological structure introduces com-
plexities in planning and large discontinuous jumps in our
algebraic limit functions. Though we plan to explore topo-
logical updates in future work, we currently consider only
a fixed topology (one base with four, three-jointed limbs)
and adjust the geometric, inertial, and actuation parameters
of that model.

Given a fixed topological structure, there are two types
of modeling parameters that we consider. In this work, we
update only continuous modeling parameters (cylindrical
limb, box-shaped base, and spherical foot dimensions as
well as link mass). Additionally, we might consider discrete
modeling parameters (e.g., integer gear ratios or fabrication
materials implying discrete link densities). Relevant mor-
phological and actuator limitation for our particular use-
case, a quadrupedal robot, are shown in Tables II and III,
respectively.



Free Variables in Hardware Design
Parameter Parameters Description

cylindrical link dims (cm) {length, radius}×Nlimb links Limb link (one parent, one child) collision and inertial geometry
box link dims (cm) {length, width, height}×1 Base link (no parent, multiple children) collision and inertial geometry (deter-

mined point where limbs branch from robot at each bottom corner of the base)
sphere link dims (cm) {radius}×Nfoot links Foot link (one parent, no children) collision and inertial geometry

link mass (g) Nlinks Mass inertial parameter of each link

TABLE II: Robot design parameters.

Robot Limitations
Parameter DoF Value

Actuator Torque Limits Njoints 1.1 N·m
Actuator Velocity Limits Njoints 6.55 rad/s

TABLE III: Limits to robotic hardware considered in the experiment. These
are the reported stall torque and max velocity of an inexpensive hobby servo.

Fig. 6: The base link (grey) has a box geometry; limbs, originating from
the corners of the base have a cylindrical geometry; feet have a spherical
geometry. All links also have a density that, with the calculated volume,
determine the mass of the link. A Kinect type sensor (unused) is rendered
also.

C. Experimental design

To determine the usefulness of the proposed interactive
design process, we compared three candidate robot models:
() an initial robot, taken without modification from
previous, successful locomotion experiments [22], [7]; () an
updated robot design created by following an automated
approach, seeded from the initial robot and allowing
the design software to iteratively update the model accord-
ing to the path of steepest descent until it can make no
further progress; and () an updated robot design created
by following a supervised approach, seeded from the
initial robot using the software to guide the designer
through modifications using the direction of steepest descent.
After generating the three candidate models, we fabricated
the initial and supervised robot models for testing in
situ. We did not attempt to fabricate the automated model,
as we did not limit it to adhere to our fabrication constraints;
we comment on this model in Section V.

We tested both fabricated robots by comparing their aver-
age velocity over a duration of trotting against the intended
trotting speed. We used this metric to determine whether in
situ performance improved at each target gait velocity for the

supervised robot over the initial robot. We expected
that the supervised robot would be much more successful
at performing the higher speed gaits, as it was modified to
respect its actuator limitations for the prescribed gaits.

The optimized robot designs (automated and
supervised) were seeded from a simple robot model
(initial). A CAD model of the initial morphology
designed for a 3D printer is depicted in Figure 7.

Fig. 7: The initial (non-optimized) robot design used to seed the
optimized models.

V. RESULTS

Fig. 8: The automated (left) and supervised (right) robot design
progress over several virtual model updates. Regions of the plot are colored
according to the percentage of the gait that robot model can complete at
the specified velocity before violating an actuator limit. Colors blue, white
and red coincide with 0, 50, and 100 percent task completion, respectively.

This section presents in situ results from the morphological
optimization process. Both supervised and automated
design processes began using the initial model attempt-
ing to perform a trotting gait (see Table I) at the starting
forward velocity of 10 cm/s.

The result of the human in the loop modification process
generated the morphology depicted (as a CAD model) in
Figure 9. The automated process generated the morphol-
ogy designed for a 3D printer depicted in Figure 10. The



automated model yielded a robot characterized by extreme
values (e.g., 1 g front foot mass and 187 mm hind foot
radius). Although fabrication of this robot is possible, hard
to quantify issues—such as self collision and thin, brittle
link geometries—likely would have resulted in the robot
destroying itself during the first test. Section V-B will note
that the seemingly more robust initial model broke in
the fifth trial during physically situated testing.

A. Robot performance in sim

Figure 8 shows that modifying the robot enough to
progress past one limit violation was usually enough to
progress through the remainder of the planned gait, at least
for a walking trot. This phenomenon expresses itself in the
plots as either 0% or 100% progress in the plot (blue or
red, respectively), and there are very few examples of 50%
progress (white). Both designs achieved the same maximum
forward trotting velocity of 50 cm/s in simulation, leading
us to conclude that the automated process resulted in a
objectively equivalent, yet qualitatively inferior robot (as will
be demonstrated shortly).

Fig. 9: The supervised optimized robot design produced using the
interactive design process.

Fig. 10: The automated optimized robot design produced using gradient
descent and no human supervision. This design has links that are too short
to fit our actuators and link radii that are too wide to achieve a reasonable
range of motion.

B. Robot performance in situ

Planning and control for the 3D printed robots was
performed by a Raspberry Pi computer looping over a
prerecorded configuration space trajectory specific to each

Parameter initial automated supervised
lFront,Hip 62 137 54
lFront,ULeg 72 96 53
lFront,LLeg 140 189 55
lHind,Hip 62 1 54
lHind,ULeg 72 81 53
lHind,LLeg 140 106 55

lBase 87 165 72
wBase 64 72 64
hBase 20 34 25

rFront,{Hip,ULeg,LLeg} 23 92 23
rHind,{Hip,ULeg,LLeg} 23 37 23

rFront,Foot 20 8 27
rHind,Foot 20 187 39
mFront,Hip 17 148 12
mFront,ULeg 18 3 12

mFront,{LLeg,Foot} 29 1 15
mFront,Hip 17 200 12
mFront,ULeg 18 166 12

mHind,{LLeg,Foot} 29 69 15

TABLE IV: Model parametrization for each robot. Masses (m) are in
grams an length (l), width (w), radius (r) and height (h) are in mm.

robot morphology. The operational space trajectory was
generated by our gait planner (Figure 4) for the initial
and supervised morphologies—taking into account the
model-parameter-dependent gait parameters—and then out-
put for the Raspberry Pi to replay. We defined gait parameters
(see Table I) relative to each robot’s body dimensions. The
situated robot was controlled at a forward velocity of 16.26
cm/s, determined by the approximately 60 Hz publish rate
of the Raspberry Pi computer: attempting faster movement
produced jumpy behavior when the robot tried to follow the
joint trajectory in real-time.

The initial robot trotted an average distance of 64 cm
over 20 gait cycles, or about 12.22 seconds of trotting during
the trials where it managed to complete the task. The robot
successfully completed the 20 gait cycles in only three of the
five trials. The robot had trouble supporting its own weight
during most trials and then fell to its side in the fourth trial;
after repeating this failure in the fifth trial, the robot hardware
was irreparably damaged—the servo horn-link interface was
stripped. The average velocity during the successful trials
was 5.23 cm/s, or about one-third of the commanded velocity.
The robot shuffled its feet throughout the trials indicating that
it was unable to produce the necessary torque to properly
move its long limbs. This discrepancy was readily detected
by the morphological modification process, and the violation
was then corrected via modifications to the robot parameters
(yielding the supervised and unsupervised models).

The supervised robot trotted at an average distance
of 99 cm over 20 gait cycles, or about 12.22 seconds of
trotting. The average velocity during the trials was 8.04 cm/s,
about one-half the commanded velocity (and 54% faster than
the initial robot). We attribute the discrepancy between
actual and desired trotting speeds to the robot’s feet tending
to slide during the gait stance phase portions. The robot
remained stable and successfully completed all trials.

VI. DISCUSSION

We described a morphological modification process that
used simulation, a human in the loop, and a design template



Fig. 11: A time-lapse of the initial (left) and optimized (right) robot
trotting for 20 gait cycles. Videos of all 20 situated trials are provided with
the supplemental material.

to modify a poorly performing robot to an effective one.
We observed a substantial performance increase between
morphologies within our situated trials, reflecting the results
from the simulated design process. We expect that further
development of such tools will allow hobbyists and profes-
sional roboticists to maximize robot performance.

ACKNOWLEDGEMENTS

This work was supported by ARO grant W911NF-16-1-
0118 and by a GWU SEAS SUPER fellowship to Bradley
Canaday.

REFERENCES

[1] J. E. Auerbach and J. C. Bongard. On the relationship between
environmental and mechanical complexity in evolved robots. In Intl.
Conf. on the Synthesis and Simulation of Living Systems (ALife),
volume 13, pages 309–316, 2012.

[2] V. Barasuol, J. Buchli, C. Semini, M. Frigerio, E. R. de Pieri, and
D. G. Caldwell. A reactive controller framework for quadrupedal
locomotion on challenging terrain. In Proc. IEEE Intl. Conf. Robot.
Autom. (ICRA), Karlsruhe, Germany, 2013.

[3] J. C. Bongard. Why morphology matters. The Horizons of Evolution-
ary Robotics, pages 125–152, 2014.

[4] B. Brogliato. Nonsmooth Impact Mechanics: Models, Dynamics, and
Control. Springer-Verlag, London, 1996.

[5] S. Coros, A. Karpathy, B. Jones, L. Reveret, and M. van de Panne. Lo-
comotion skills for simulated quadrupeds. In Proc. ACM SIGGRAPH,
2011.

[6] K. M. Digumarti, C. Gehring, S. Coros, J. Hwangbo, and R. Siegwart.
Concurrent optimization of mechanical design and locomotion control
of a legged robot. In Proc. Intl. Conf. Climbing Walking Robots
(CLAWAR), 2014.

[7] E. Drumwright. Rapidly computable viscous friction and no-slip rigid
contact models. arXiv, 2015.

[8] B. Hengst, D. Ibbotson, S. B. Pham, and C. Sammut. Omnidirectional
locomotion for quadupred robots. In Proc. RoboCup 2001: Robot
Soccer World Cup V, pages 368–373, 2002.

[9] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal. Learn-
ing, planning, and control for quadruped locomotion over challenging
terrain. Intl. J. Robot. Res., 30(2):236–258, 2011.

[10] T. R. Kane and D. A. Levinson. Dynamics: Theory and Applications.
McGraw-Hill, New York, 1985.

[11] J. Lee, D. J. Hyun, J. Ahn, S. Kim, and N. Hogan. On the dynamics
of a quadruped robot model with impedance control: Self-stabilizing
high speed trot-running and period-doubling bifurcations. In Proc.
IEEE/RSJ Intl. Conf. Intell. Robots & Systems (IROS), Chicago, 2014.

[12] V. Megaro, B. Thomaszewski, M. Nitti, O. Hilliges, M. Gross,
and S. Coros. Interactive design of 3d-printable robotic creatures.
In Special Interest Group on Computer GRAPHics and Interactive
Techniques (SIGGRAPH), 2015.

[13] A. L. Nelson, G. J. Barlow, and L. Doitsidis. Fitness functions in evo-
lutionary robotics: A survey and analysis. Robotics and Autonomous
Systems, 57(4):345—370, April 2009.

[14] P. E. Nikravesh. Computer-Aided Analysis of Mechanical Systems.
Prentice Hall, 1988.

[15] J. Peters, M. Mistry, F. Udwadia, J. Nakanishi, and S. Schaal. A unify-
ing methodology for robot control with redundant DOFs. Autonomous
Robots, 24(1–12), 2008.

[16] R. Pfeifer and F. Iida. Creating Brain-Like Intelligence, volume 5436
of Lecture Notes in Computer Science, chapter Morphological Com-
putation: Connecting Body, Brain, and Environmentand environment,
pages 66–83. Springer, 2009.

[17] B. Satzinger, J. Reid, M. Bajracharya, P. Hebert, and K. Byl. More
solutions means more problems: Resolving kinematic redundancy in
robot locomotion on complex terrain. In Proc. IEEE/RSJ Intl. Conf.
Intell. Robots & Systems (IROS), Chicago, 2014.

[18] G. Schultz and K. Mombaur. Modeling and optimal control of running.
IEEE/ASME Trans. on Mechatronics, 15(5), 2010.

[19] K. Sims. Evolving virtual creatures. In Special Interest Group on
Computer GRAPHics and Interactive Techniques (SIGGRAPH), pages
15–22, 1994.

[20] D. E. Stewart. Rigid-body dynamics with friction and impact. SIAM
Review, 42(1):3–39, Mar 2000.

[21] S. Zapolsky. Pacer. https://github.com/PositronicsLab/Pacer, 2015.
[22] S. Zapolsky and E. Drumwright. Quadratic programming-based

inverse dynamics control for legged robots with sticking and slipping
frictional contacts. In Proc. IEEE/RSJ Intl. Conf. Intell. Robots &
Systems (IROS), 2014.


