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Abstract—Roboticists modeling control of manipulator and
legged robots often assume force/torque-based control using an
open-loop model of voltage, hydraulic pressure, or pneumatic
pressure to actuator torques. This paper shows that such
force/torque-based models can lead to stiff differential equations,
which are computationally inefficient to solve: relatively small
integration steps are necessary to ensure stability.

We have investigated two approaches which appear to mitigate
this problem: incorporating transmission modeling (applicable
only to electromagnetic actuators at present) and inverse dy-
namics control. Both of these approaches require increased
computation per integration step, but this work will demonstrate
that the larger integration steps can still yield considerably higher
simulation throughput.

This paper will also identify research challenges with using
inverse dynamics control within multi-rigid body simulations. In
particular, we examine the state of the art approach for inte-
grating the simulation subject to contact and inverse dynamics
constraints and identify algorithmic challenges, both theoretical
and practical.

Experimental virtual robot platforms include a UR10 manip-
ulator arm and a locomoting quadrupedal robot.

I. INTRODUCTION

Roboticists often wish to simulate controlled systems
rapidly while prototyping control schemes and hardware de-
signs. In these cases, reducing the duration of the “edit-
compile-test” cycle is more important than reducing numerical
solution error, which roboticists might do after obtaining some
confidence in their approach.

As an anecdotal example of where such an approach might
be useful, the last author recently tasked students in a course
with producing gait generation and balance stabilization soft-
ware for a simulated legged robot. The underactuated nature
of the robot limited the utility of strictly kinematic simula-
tion. And the inclusion of error feedback controllers, which
requires careful tuning to balance dynamic performance with
simulation stability, made debugging both more challenging
(e.g., Did the robot fall because control was not sufficiently
accurate?) and slower than desirable—with the inclusion of
control, inverse kinematics, and planning code, simulations
would run several times slower than real-time.

The present work continues a previous investigation [16]
into means to accelerate this process. That work found that
exponential energy dissipation can be used to increase sim-
ulation stability. However, it should be clear that excessive
dissipation will lead to artifacts (e.g., the robot acts as if it is
moving through molasses), and we have found it challenging
to balance numerical stability and physical fidelity with that
approach. The present study started from the observation that

simulating robots with few degrees of freedom and controlled
via error feedback could admit large integration steps. These
large integration steps can yield much faster simulations at the
expense of lower numerical accuracy. Accordingly, this paper
tests the following hypotheses:

Hypothesis 1: Driving a multi-body system (e.g., a robot
interacting through contact with one or more rigid bodies)
through inverse dynamics control can yield greater numerical
stability than tuned PD/PID control can offer.

Hypothesis 2: Integrating a multi-body system that ac-
counts for both contact and inverse dynamics constraints yields
greater numerical stability than feeding the output from an
inverse dynamics controller into the simulation’s integrator.

Hypothesis 3: Incorporating transmission models for elec-
tromagnetic actuators can increase numerical stability for
simulations of robotic systems driven by PD/PID control.

II. RELATED WORK

Related work spans literature in “stiff” differential equations
(§II-A), multi-body systems with large mass ratios (§II-B),
“motors” in Open Dynamics Engine (§II-C), inverse dynamics
computation with simultaneous contact constraints (§II-D), and
kinematic simulations (§II-E).

A. “Stiff” systems

We are unaware of an accepted formal definition of a “stiff”
dynamical system. An informal characterization of such sys-
tems is that their solution is smooth, yet uninformed numerical
approaches to them can require extremely small integration
steps. Mechanical systems with springs and dampers are the
archetype of stiff systems, and error feedback controllers
applied to mechanical systems without springs and dampers
make them act like stiff systems. As a result, rapid prototyping
of systems driven with roboticist’s typical control techniques
has proven challenging; simulations may run one or more or-
ders of magnitude more slowly than useful in such preliminary
testing.

B. High mass ratios

Multi-rigid body systems with high mass ratios between
links can be viewed as a type of stiff system [2]. However,
Featherstone found that the condition number of the joint
space inertia matrix increases quartically with the length of a
kinematic chain [6], which points to another possible source of
system stiffness. The robotic systems used in the experiments
within this present work were modeled from CAD data and
do not contain significant disparities in masses, but the inertia



matrix condition numbers (on the order of 108) can still be
problematic.

C. “Motors” in Open Dynamics Engine

The Open Dynamics Engine (ODE) manual describes “motors”,
which implement the technique described in this present work,
in the following way.

... [A]pplying forces directly [to joints] is often not
a good approach and can lead to severe stability
problems if it is not done carefully.
Consider the case of applying a force to a body to
achieve a desired velocity. To calculate this force
F you use information about the current velocity,
something like this:

F = k(desired speed− current speed) (1)

This has several problems. First, the parameter k
must be tuned by hand. If it is too low the body
will take a long time to come up to speed. If it is too
high the simulation will become unstable. Second,
even if k is chosen well the body will still take a few
time steps to come up to speed. Third, if any other
“external” forces are being applied to the body, the
desired velocity may never even be reached (a more
complicated force equation would be needed, which
would have extra parameters and its own problems).
Joint motors solve all these problems ... They can
effectively see one time step into the future to
work out the correct force. This makes joint motors
more computationally expensive than computing the
forces yourself, but they are much more robust
and stable, and far less time consuming to design
with. This is especially true with larger rigid body
systems.

This text indicates that incorporating inverse dynamics into
the constraint equations is convenient for the user, but it does
not elaborate upon the difficulty of attaining fast simulation
performance even with well-tuned error feedback control. We
are unaware of a general writeup of this technique, including
incorporation into the differential variational inequality formu-
lation.

D. Inverse dynamics with contact

In past work, we have described algorithms for com-
puting inverse dynamics forces, without limiting mo-
tor forces/torques, while simultaneously predicting contact
forces [15, 17, 14]. Our work has recently shown that a solu-
tion always exists as long as the desired velocities are consis-
tent with the contact constraints [17], a finding that contrasted
with claims in [13]. Note that we say “desired velocities”
rather than “desired accelerations” due to inconsistencies in
the rigid contact model with Coulomb friction [12]; velocity-
level, differential variational inequality [12] formulations of
the dynamics problems with contact are provably able to avoid
such inconsistencies.

E. Kinematic simulations

The Institute for Human and Machine Cognition’s (IMHC)
robotics group has adopted a similar approach to that described
in this paper:1 desired joint and floating base accelerations
are double integrated to yield kinematically driven simulations
of legged robots for rapid testing. This approach apparently
works well for robots interacting with static environments,
but has been tested little on robotic manipulation tasks. The
differences between IHMC’s approach and the inverse dy-
namics approaches described in this paper follow: () inverse
dynamics retains floating base underactuation, allowing a
legged robot to trip, for example (IHMC’s approach would
not capture this behavior); () inverse dynamics incorporates
non-interpenetration and torque constraints, among other con-
straints, precluding dynamically infeasible motions (to the
first-order accuracy provided by the differential variational
inequality-based approach); and () IHMC’s approach does
not have to constrain the motion by solving optimization or
mathematical programming problems, meaning that it will
generally operate far faster.

III. MULTI-BODY DYNAMICS SIMULATION WITH CONTACT
AND INVERSE DYNAMICS

We now describe the formulation of the multi-body dynam-
ics problem with contact and inverse dynamics constraints.
Joint limits and bilateral constraints can be incorporated us-
ing straightforward extensions and are not discussed here to
streamline the presentation. This mixed linear complementarity
problem formulation [3] is used in ODE and other software.
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This problem formulation matches that in [17] almost ex-
actly, and the reader is referred to that work for greater insight
into inverse dynamics subject to unilateral constraints. Briefly,
there are m generalized velocities (r of which are actuated),
n points of contact, and k line segments in polygonal approx-
imations to friction cones; problem inputs are M ∈ Rm×m

(generalized inertia matrix), v ∈ Rm (generalized velocity
vector), P ∈ Rr×m is a binary selection matrix (the identity
matrix if the controlled system is fully actuated), N ∈ Rn×m

(contact normals Jacobian matrix), F ∈ Rnk×m (contact tan-
gents Jacobian matrix), µ ∈ Rn×n (diagonal matrix of friction
coefficients), E ∈ Rnk×n (binary matrix described in [1]),
q̇des ∈ Rr (desired joint velocities), and κ ≡Mv + ∆tf

1Personal communication with Jerry Pratt.
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Fig. 1. The mean absolute joint position error for the ID constraint, ID control, and PD control for the quadruped at various timesteps (a). The mean absolute
joint position error for the ID constraint, ID control, PD control and geared PD control for the UR10 at various timesteps (b). A transparent bar indicates
instability for the control at the given timestep.

(f ∈ Rm are all non-contact and non-inverse dynamics
forces on the system, ∆t).

Key solution variables are v+ ∈ Rm (velocities at
t + ∆t, i.e., after integration), τ ∈ Rr (inverse dynamics
forces/torques), fN ∈ Rn (contact normal forces), fF ∈ Rnk

(contact friction forces), λ ∈ Rn (roughly equivalent to
tangent contact velocities at t+ ∆t, see [1]).

A. Drawback of the MLCP formulation

The difference between [17] and ODE’s approach is that in
the latter, τ is constrained to lie in [τ−, τ+], which means
that the inverse dynamics constraints might not be perfectly
satisfied (hence the presence of the termw+

τ −w−
τ ). These new

equations and variables specify that if the inverse dynamics
constraint can be satisfied exactly, then w+

τ − w−
τ = 0.

Otherwise, the joint torque acts against the “slack” in the
constraint. In other words, if the velocity at v+ for the ith

joint is greater than that desired, then the torque applied at that
joint must lie at the lower limit; similarly, the torque applied
at that joint must lie at the upper limit if the velocity at v−

for the ith joint is lesser than that desired. This problem setup
is reasonable in many but not all cases: it is possible that
applying a torque at an actuator’s lower torque limit could
result in greater divergence from the desired velocity at that
joint than if no torques were applied (depending on other
variable settings). Neither does this problem setup appear to
minimize any norm over the difference between desired and
resulting velocity.

B. Solvability of the MLCP formulation

[17] showed that this problem can be solved, including
determining whether the desired velocities are consistent with
the other constraints, for τ− ≡ −∞, τ+ ≡ ∞ and in expected
polynomial time by first converting it to a “pure” linear
complementarity problem. For finite torque limits, the mixed
linear complementarity problem cannot be converted to a pure
LCP, so an algorithm for solving mixed LCPs of this form
must be applied. Lemke’s Algorithm can be modified to handle
lower and upper variable limits (as described in [10]) but is
only provably able to solve MLCPs with positive semi-definite

matrices. The result is that the MLCP in Equations 2–7, which
results in a copositive matrix [11, 3], is not generally capable
of being solved in polynomial time using existing algorithms.
In fact, when the desired velocities are inconsistent with
the other constraints, the MLCP is unsolvable even without
torque limits. Accordingly, ODE uses regularization to solve
a “nearby” MLCP. All problem constraints—including non-
interpenetration, Coulomb friction, joint limits, and inverse
dynamics—will be violated by the degree of regularization.
The ramifications of such violations are generally unknown,
though one of our experiments in §IV-B describes one out-
come.

IV. EXPERIMENTS

Simulation experiments were conducted using the multi-
rigid body dynamics library Moby , which uses pivoting solvers
in place of the matrix splitting method solvers often em-
ployed to speed simulations; these solvers do not provably
converge [8], so we avoid them to simplify our experiments,
but we remark that they run very fast and often perform
acceptably. The robots used in the experiments were the UR10
arm (sourced from an existing open source ROS package)
and a floating base quadruped model described in existing
work [16]. The UR10 arm possesses eight degrees-of-freedom
(DoF), all controllable. The quadruped model possesses 18
DoF, 12 of which are controllable.

The UR10 was directed to follow a sinusoidal motion at
each joint, while the quadruped was commanded to follow a
sinusoidal pattern that resembled a trot. Each simulation was
run for five seconds of virtual time.

When PD controllers were used in the following exper-
iments, gains were tuned by a two-part process consisting
of manual tuning followed by nonlinear optimization. The
optimization routine minimized the `2-norm over the sum of
all squared joint position errors. The gains were tuned in this
way to eliminate human bias to the greatest extent possible;
otherwise, the experimenter could subconsciously reduce gains
to prioritize simulation stability over tracking accuracy.

Where applicable, our experiments use inverse dynamics-
based algorithms that can account for torque limits—the ones
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Fig. 2. The difference between inverse dynamics forces fed into the simulator (a) and the simulator computing the next velocity of the multi-rigid body
dynamics simulation while accounting for the inverse dynamics constraints (b). x, v, M, and f are the generalized positions, velocities, inertias, and forces
respectively. The architecture on the right is faster, because that on the left solves essentially the same problem twice: once in the controller—the contact
forces must be accounted for in the inverse dynamics forces, but the former are then discarded—and then again in the simulator.

described in this paper, not [17]—even though torque limits
are set to ±∞ (i.e., unused). This decision allowed us to
study the computational properties of these methods without
focusing on whether our virtual robots would possess the
actuator forces necessary to complete tasks. Integration steps
were limited, albeit arbitrarily, to a maximum of 0.1s. The
initial integration step size tested for each model was 0.001,
a value that we confirmed produced stable simulations of
each model readily. Step sizes were doubled until instability
resulted—at which point bisection search was conducted to
identify an approximate maximum stable step size—or the
maximum value of 0.1s was reached.

Fig. 3. The mean absolute position error of each joint on the UR10 arm as it
executes a sinusoidal motion on each joint at various timesteps. ID constraint
was used to achieve the maximum 0.1 timestep.

A. Testing Hypothesis 1: incorporating inverse dynamics con-
trol leads to more stable simulations than error feedback
control

A PD-controlled UR10 arm served as one experimental
control for Hypothesis 1. The maximum step size we attained

using this controller without the simulation becoming unstable
was 0.001. On the other hand, we found that we could simulate
the UR10 arm stably without any controls applied (i.e., the
robot falls under the influence of gravity) with a step size
of 0.1 (the maximum tested). This result indicates that the
PD control introduces stiffness into the differential equations;
this result is not surprising given that () PD control can
be viewed as a virtual spring damper and () the mass-
spring system is the canonical example of a stiff ordinary
differential equation [7]. For the experimental variable, we
used the standard recursive Newton-Euler Algorithm [5] to
generate inverse dynamics torques.

An experimental control in a second experiment used the
quadrupedal robot model driven by PD control. We used
the non-complementarity-based inverse dynamics control ap-
proach described in [17], which was necessary since one
or more links of the robot remained in contact with the
environment, as our experimental variable. Tables II and I
list the results from the experiments with both robots: inverse
dynamics control allows the simulations to run 540% and 66%
faster, respectively.

In both experiments, the ID control was able to achieve
a higher timestep than the PD control. Figure 1 (a) shows
that during the quadruped experiment, the ID control was
able to achieve a maximum stable timestep of 0.004. The
PD control, on the other hand was only able to achieve a
maximum timestep of 0.001. Part (b) shows the ID control
being able to achieve a timestep of 0.05 when the sinusoidal
motion was run on the UR10 arm. PD control was still only
able to achieve a maximum step size of 0.001. The large
increase of timestep with regards to the ID control from the
quadruped experiment to the UR10 experiment is likely due
to the fact that the quadruped actually experiences contact in
its controlled motion, while the UR10 experiences no contact.



B. Testing Hypothesis 2: incorporating inverse dynamics con-
straints leads to more stable simulations than using inverse
dynamics control

Although it is possible that inverse dynamics torques fed
into a simulator yield exactly the desired velocity at the next
time step2, this result is not guaranteed (as the data from
the previous section show). Hypothesis 2 arose from our
observations about the split nature of the control-simulation
process (see Figure 2): we speculated that solving for the next
velocity subject to all constraints would yield higher greater
simulation stability than feeding the inverse dynamics torques
into the simulator’s constraint solver (i.e., its mixed or pure
linear complementarity problem solver).

We used the inverse dynamics controllers employed as
the experimental variables in our tests of Hypothesis 1 as
the experimental controls in our tests of Hypothesis 2. For
the variables in this experiment, we tested the UR10 arm
and the quadrupedal robot using the MLCP-based inverse
dynamics formulation described in Section III. We also tested
the quadrupedal robot using an experimental, optimization-
based constraint solver. We will only provide an outline of
the technical approach as we identified a key problem with the
approach (to be described below). The solver first computes a
feasible point that satisfies both the contact normal velocity
constraints (Nv+ ≥ 0, from Equation 2) and the inverse
dynamics velocity constraints (Pv+ − q̇des = 0). Quadratic
programming is then used to attempt to find frictional forces
that maximally dissipate kinetic energy without violating these
constraints (in the spirit of [4]).

Figure 3 depicts the speedup achieved from the use of
constraint-based inverse dynamics. At a timestep of 0.01,
the use of inverse dynamics constraints is able to achieve
around the same order of accuracy as the PD control at a
timestep of 0.001. Incorporating ID constraints into the UR10
simulation process executed in 9.11s at a 0.01 timestep, while
the PD controlled arm required 357.02s at a 0.001 timestep. ID
constraints achieved a 39x speedup with essentially the same
accuracy.

The results for the quadrupedal robot in Table I require
explanation. The existing, MLCP-based approach caused the
simulation to become unstable at any step size. Regularizing
the MLCP (via Tikhonov regularization) did not help: such
large regularization—it was necessary to add values on the
order of 1.0 to MLCP matrix to attain a solution—that the
result was no longer a solution to a “nearby” problem. Note
that applying the constraint solver to the individual problems
of inverse dynamics without contact (by temporarily de-
activating gravitational forces) and contact without inverse
dynamics (i.e., just using PD control) works fine; problems
only arise when the constraints are considered simultaneously.
We used the Dantzig solver [9], which is also used by ODE ,
to solve the mixed linear complementarity problem.

2We use desired velocity in place of desired acceleration for reasons de-
scribed in [17]. Popular open source multi-rigid body dynamics libraries used
for robotics (e.g., ODE , Bullet , DART ) employ a first-order approximation
to velocity, thus supporting our choice.

On the other hand, our experimental approach outlined
above was capable of generating an accurate solution—and,
as with the UR10 model—the simulation remained perfectly
stable for large step sizes. However, our results do not capture
an important artifact: the quadruped appeared to be skating as
if on ice when it should have been trotting. Examination of
the constraint solver indicated that the solution method would
have had to slightly violate the inverse dynamics constraints
to incorporate frictional forces; our experimental approach is
flawed and thus illustrates what can happen when constraints
may be violated arbitrarily (refer back to §III-B). Nevertheless,
Table I does hint at the possibility of a 226% speedup.

C. Testing Hypothesis 3: incorporating transmission models
increases the stability of robots driven by error feedback
control

Claude Lacoursière suggested in personal communication
that adding gearing to a robot model might reduce the stiffness
in the differential equations. Accordingly, we compared the PD
controlled UR10 used to test Hypothesis 1 to a PD controlled
UR10 with a virtual transmission modeled at each revolute
joint; the gains were re-tuned for this modified model. Gearing
was not added to our quadrupedal model because significant
architectural modifications would be necessary in our robot’s
locomotion software to accommodate gearing. Table II and
Figure 3 illustrate that the gearing does dramatically increase
the maximum stable step size, at a clear cost of tracking
accuracy.

V. DISCUSSION

We have demonstrated the capability of inverse dynamics to
dramatically speed multi-rigid body simulations with contact.
Each inverse dynamics constraint (i.e., specification of a
joint velocity) increases the size of the mixed LCP (when
accounting for force/torque limits) or pure LCP (without
force/torque limits) to be solved; in the latter case, a variable
is added to a linear system to be solved independently of
the LCP, as described in [17]. We note that this is exactly
the same procedure as that required to account for a gear
constraint: the computational demands are identical. Though
the computational demands to solve these problems are larger
than that required for error feedback controlled robots, the
maximum stable integration step sizes are tens or hundreds of
times larger, thereby permitting much faster simulations.

Aside from the wasted computational effort of solving
the same problem twice—once for the controller to compute
inverse dynamics subject to contact and joint limit constraints
and once for the simulation’s solver to compute contact and
joint limit forces subject to the control forces/torques, see
Figure 2—we have shown that incorporating the constraints
into the constraint solver is less likely to cause simulation
instability. We believe that the explanation for the stability
decrease by feeding the inverse dynamics forces/torques into
the simulation is due to very slight discrepancies in inputs; for
example, the friction pyramids used for the Coulomb friction
approximations between the two constraint solvers can use



Control method Max step Accuracy (MAE) at max step Running time
PD control 0.001 3.80× 10−2 24.84s
Inverse dynamics (control) 0.004 9.05× 10−3 4.97s
Inverse dynamics (constraint, MLCP approach) — — —
Inverse dynamics (constraint, experimental solver) 0.10 5.10× 10−2 2.54s

TABLE I
MEAN OF ABSOLUTE ERROR (MAE) JOINT POSITION TRACKING ACCURACY ON THE SIMULATED QUADRUPEDAL ROBOT

Control method Max step Accuracy (MAE) Running
at max step time

PD control 0.001 1.01× 10−2 357s
PD control (geared robot) 0.05 1.74× 10−1 24.6s
Inverse dynamics (control) 0.05 2.85× 10−2 6.51s
Inverse dynamics (constraint) 0.10 1.15× 10−1 2.85s

TABLE II
MEAN OF ABSOLUTE ERROR (MAE) JOINT POSITION TRACKING

ACCURACY ON THE SIMULATED UR10 MANIPULATOR

different principal directions (which are selected arbitrarily).
Our prior work [17], which demonstrates high, albeit imperfect
tracking accuracy for inverse dynamics of simulated robots,
hints at this phenomenon.

It is clear that important work still remains, particularly
in finding a computationally tractable model that produces
reasonably accurate contact forces and satisfies inverse dy-
namics constraints as well as force/torque limits allow. We
believe the complementarity-free contact model we described
in [4] will provide such a foundation, but further research
is necessary. In the meantime, adding gearing to robots with
electromagnetic actuators can provide the requisite simulation
stability necessary for high frequency (realtime and above)
simulation, albeit with far lower tracking accuracy.
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