
Simulation Based
Fault Detection and Design Modification

for Highly Dynamic Robotic Systems

Samuel Robert Zapolsky

April 11, 2017

B.A. in Economics & International Affairs, May 2012, George Washington University

A Dissertation submitted to

The Faculty of
The School of Engineering and Applied Science

of The George Washington University
in partial satisfaction of the requirements
for the degree of Doctor of Philosophy

May 21, 2017

Dissertation directed by

Evan M. Drumwright
Toyota Research Institute

The School of Engineering and Applied Science of The George Washington University certifies

that Samuel Robert Zapolsky has passed the Final Examination for the degree of Doctor of Philos-

ophy as of February 24, 2017. This is the final and approved form of the dissertation.

Simulation Based

Fault Detection and Design Modification

for Highly Dynamic Robotic Systems

Samuel Robert Zapolsky

Dissertation Research Committee:
Evan Drumwright, Senior Research Scientist, Toyota Research Institute, Dissertation Di-

rector

Gabriel Parmer, Department of Computer Science, George Washington University, Com-

mittee Chair

Andy Ruina, Professor of Mechanical Engineering, Cornell University, Committee Mem-

ber

Stefan Schaal, Professor of Computer Science, Neuroscience, and Biomedical Engineer-

ing, University of Southern California, Committee Member

Aaron Johnson, Professor of Mechanical Engineering, Carnegie Mellon University, Com-

mittee Member

Rahul Simha, Professor of Computer Science, George Washington University, Commit-

tee Member

ii

In memory of my good friends Brock and Navdeep

and

For my parents Valerie and Jeffrey and my brothers Benjamin, Nathan, and Ivan

iii

Acknowledgments

I would first like to thank my thesis advisor Dr. Evan Drumwright who is now a Senior Research

Scientist at Toyota Research Institute. When I started my work in robotics, I was completing a

bachelor’s degree in international affairs and had very few tangible qualifications, just a will to

succeed and a desire to learn. Prof. Drumwright’s confidence in and willingness to vouch for my

potential might have been the single, pivotal reason behind how I was able to break into the field

of robotics. His continual support has enabled me to succeed and has demonstrated the type of

mentorship that I believe all advisors should aspire to.

I would also like to thank by fellow researchers at the Italian Institute of Technology (IIT) in

Genoa, Italy: my lab mates Hamza Khan, Michele Focchi, Victor Barasuol, Ioannis Havoutis,

Jake Goldsmith, Thiago Bonaventura, Marco Frigerio and our mentors Jonas Buchli and Claudio

Semini. The researchers at IIT contributed to my first published paper and introduced me to the

subject of legged locomotion in robotics. Without their passionate participation in my research and

genuine friendship I would not be the researcher I am today.

I have mentored or participated in mentoring several students throughout my doctoral study:

Matthew Scaperoth, Joshua Shapiro, Jonathon Shepherd, and Bradley Canaday to name only a

few. I hope their time in the Positronics Lab and their experience with collaborative coding and

research was as education to them as it was for me.

Finally, I must express my gratitude to my lab mates in the Positronics Lab at GWU: James

Taylor, Roxana Leontie and Joshua Lurz for providing me with unfailing support and continuous

encouragement throughout my years of study and throughout the process of researching and writ-

ing this thesis. I wish them the best in completing their thesis; I hope I can continue to support you

all as you have supported and helped me grow through the years. This accomplishment would not

have been possible without them. Thank you.

iv

Abstract

Simulation Based

Fault Detection and Design Modification

for Highly Dynamic Robotic Systems

The current approach to creating and improving robots and their control systems
follows a cycle where complex mechanisms and controllers are iteratively designed,
briefly debugged in a simulated environment, built, tested and then redesigned to
address anomalous behaviors that were observed during in situ testing. During the
initial cycles of this procedure, when unvetted control systems are tested on physi-
cal hardware, easily avoidable errors (e.g., unexpected collisions from inexact link
geometry measurements or parasitic oscillation in actuators and passive elements)
can have catastrophic consequences.

Although testing robots in situ can be costly, often entirely new phenomena
emerge from situated testing that were not observed throughout early computerized
simulation-based testing. The discovery of such unanticipated behavior is currently
considered a normal occurrence during robotics testing in situ. This anticipated
unanticipated behavior—the expectance of the unknown during robot operation—
is due in part to the increased complexity of robotic systems (e.g., uneven terrain,
impacting collision, unpredictable contact conditions) compared to typical automo-
tive or aerospace applications that rely heavily on simulation-based testing before
physical testing.

I have investigated a statistical approach to simulation, where the indeterminacy
of physical models or uncertainty in the structure of a mechanism or its environ-
ment is represented as a collection of particles in many parallel simulations. The
aim of this approach is to inform roboticists of the possible unknown or unexpected
behaviors that a robotic system may exhibit in order to address these faults before
they have been observed on the physical system. Our approach excites many of
the errors caused by modeling, sensory, actuation, and communication error or un-
certainty and can assist roboticists in determining whether certain robot designs,
control systems, or modeling assumptions might result in hard-to-predict behavior;
I use this information to predict the robustness or brittleness control policies and
then validate the predictions in situ, on low-cost quadrupedal robots.

This dissertation presents tools for automating and or simplifying a roboticist’s
typical workflow (i.e., designing, testing, controlling, and debugging robots). These
tools aim to inform roboticists of the possible unknown or unexpected behaviors
that a robotic system may exhibit in order to address these faults before they have
been observed on the physical system. The goal of this dissertation is to greatly
accelerate the design-build-test cycle of research in robotics by providing a readily
usable virtual testing and design framework for robot hardware and software.

v

Table of Contents

Acknowledgments . iv

Abstract . v

List of Figures . x

List of Tables . xvii

1 Introduction . 1
1.1 Designing and testing robotic systems subject to uncertainty 2
1.2 Contributions and organization of chapters 3

2 Background and Related work . 9
2.1 Planning with uncertainty . 9

2.1.1 Robust Planning and Control . 10
2.1.2 Monte Carlo method and particle approaches 11
2.1.3 Simulation-based planning . 11

2.2 Automated robot controller and mechanism design 12
2.2.1 Evolutionary robotics . 12
2.2.2 Morphological computation . 13
2.2.3 Situated robotics & embodied cognition 13
2.2.4 Validity of programmed behavior in situ 13

2.3 Limbed robots: Nonholonomic control with contact 14
2.3.1 Locomotion . 14

2.4 Stability analysis and control of nonsmooth systems 15
2.4.1 Bifurcations in dynamical systems 15

2.5 The rigid body . 16
2.5.1 Rigid body dynamics . 16
2.5.2 Non-smooth mechanical systems . 16
2.5.3 Simulating multi-rigid bodies . 17
2.5.4 Spatial and generalized velocities . 18

3 Particle traces . 20
3.1 Control and simulation of robotic systems subject to uncertainty 20
3.2 Sampling-based approach . 22

3.2.1 Generating particles . 22
3.2.2 Pseudorandom sampling of particle parameters 23
3.2.3 Quasi-random sampling . 24

3.3 Control Policy . 25
3.4 Tasks & Task Requirements . 25
3.5 Physically simulating particles: The “Particle Traces” approach 26

3.5.1 Computational Complexity . 28

vi

3.6 Processing particle trace telemetry . 29
3.6.1 Detecting particle trace bifurcation 30

3.7 Conclusion . 34

4 Virtual Falsification: checking for faulty robot behavior in sim 35
4.1 Policy scoring: success rate . 37
4.2 Enacting a safety factor for measured particle parameters 38
4.3 Illustrative & motivating examples: using the particle traces approach in sim 39

4.3.1 Manipulator: comparing policies for picking-up a ball 39
4.3.2 Quadruped: detecting grazing bifurcation 46
4.3.3 Quadruped: Verifying the stability of gait transition timing online . . . 52

4.4 Validation of particle traces approach in situ 56
4.4.1 Robot . 57
4.4.2 Control policy: gait parameters . 58
4.4.3 Results . 59

4.5 Conclusion . 63

5 Computer-aided robot improvement . 65
5.1 Approach . 66

5.1.1 Limitations on robot performance . 67
5.1.2 Quantifying robot limitations for computer-aided design modification . 69
5.1.3 Control Policy: task trajectory . 71

5.2 Iterative robot design . 73
5.2.1 Considering coordinate based witness functions with a “sliding window” 77
5.2.2 Relating witness functions to design and controller parameters 77

5.3 Conclusion . 79

6 Virtual Prototyping: simulation-assisted robot design 80
6.1 Overview of virtual and in situ tests . 81

6.1.1 Robot Limitations . 81
6.2 Designing a 3D printed Robot . 83

6.2.1 Experimental design . 84
6.2.2 Morphological parameterization . 85
6.2.3 Gait Parameterization . 86
6.2.4 Robot performance in sim . 86
6.2.5 Results in situ . 88

6.3 Reconfigurable Quadruped . 91
6.3.1 Platform . 92
6.3.2 Control policy: gait parameterization 93
6.3.3 Results in situ . 93

6.4 Conclusion . 97

7 Inverse Dynamics with Contact . 99
7.0.1 Invertibility of the rigid contact model 101
7.0.2 Indeterminacy in the rigid contact model 101

vii

7.0.3 Contributions . 102
7.1 Background and related work . 103

7.1.1 Complementarity problems . 103
7.1.2 Relationship between LCPs and MLCPs 105
7.1.3 The multi-body . 105
7.1.4 Rigid contact model . 106
7.1.5 Contact force indeterminacy . 113
7.1.6 Contact models for inverse dynamics in the context of robot control . . 114
7.1.7 Contact models for inverse dynamics in the context of biomechanics . 115

7.2 Discretized inverse dynamics . 115
7.2.1 Incorporating contact into planned motion 116
7.2.2 Incorporating contact constraints that do not coincide with control

loop period endpoint times . 116
7.2.3 Computing points of contact between geometries 119

7.3 Inverse dynamics with no-slip constraints 120
7.3.1 Normal contact constraints . 121
7.3.2 Discretized rigid body dynamics equation 121
7.3.3 Inverse dynamics constraint . 122
7.3.4 No-slip (infinite friction) constraints 122
7.3.5 Retrieving the inverse dynamics forces 125
7.3.6 Indeterminacy mitigation . 126
7.3.7 Scaling inverse dynamics runtime linearly in number of contacts . . . 127

7.4 Inverse dynamics with Coulomb friction . 130
7.4.1 Coulomb friction constraints . 130
7.4.2 Resulting MLCP . 131
7.4.3 Contact indeterminacy . 133

7.5 Convex inverse dynamics without normal complementarity 134
7.5.1 Two-stage vs. single-stage approaches 135
7.5.2 Computing inverse dynamics and contact forces simultaneously (Stage

I) . 136
7.6 Experiments . 146

7.6.1 Platforms . 146
7.6.2 Source of planned trajectories . 147
7.6.3 Evaluated controllers . 148
7.6.4 Software and simulation setup . 150
7.6.5 Terrain types for locomotion experiments 150
7.6.6 Tasks . 151

7.7 Results . 152
7.7.1 Smoothness of torque commands . 155
7.7.2 Verification of correctness of inverse dynamics 156
7.7.3 Controller behavior . 157
7.7.4 Center-of-mass tracking performance 158
7.7.5 Discussion of inverse dynamics based control for legged locomotion . 161

7.8 Conclusion . 162

viii

8 Numerical stability for simulating robots controlled with error feedback . . . 163
8.1 “Stiff” systems . 164

8.1.1 High mass ratios . 164
8.2 “Motors” in Open Dynamics Engine . 165
8.3 Kinematic simulations . 166
8.4 Multi-body dynamics simulation with contact and inverse dynamics 166

8.4.1 Drawback of the MLCP formulation 168
8.4.2 Solvability of the MLCP formulation 169

8.5 Experiments . 169
8.5.1 Testing the hypothesis that incorporating inverse dynamics control

leads to more stable simulations than error feedback control 171
8.5.2 Testing the hypothesis that incorporating prescribed motion con-

straints leads to more stable simulations than using inverse dynamics
control . 172

8.5.3 Testing hypothesis that incorporating transmission models increases
the stability of robots driven by error feedback control 174

8.5.4 Discussion of Results . 175
8.6 Conclusion . 175

9 Quadrupedal Robot Locomotion . 177
9.1 Locomotion control policy . 177
9.2 Gait Planning . 179

9.2.1 Gait parameters . 180
9.2.2 Gait planning algorithm . 181
9.2.3 Gait Timing . 183
9.2.4 Stance Phase . 186
9.2.5 Swing Phase . 188

9.3 Plugin-based robot interface and control architecture 190
9.3.1 Modular planning and control framework 191

9.4 Driving and Navigation . 192
9.4.1 Steering . 192
9.4.2 Gamepad input . 193

9.5 Conclusion . 195

10 Discussion, Conclusions, and Future Work 197

Appendix . 198

References . 204

ix

List of Figures

1 Sources of uncertainty in situ. The fidelity of a control system’s expected behav-
ior to its performance in situ will depend on how much each “source of uncer-
tainty” perturbs the information passing through it. 21

2 Sources of uncertainty in simulation. The sampling-based approach described
in this dissertation introduces the box labeled “Fabrication”. Fabrication, in
this context, performs an inverse function to “Abstraction + Measurement” in
Figure 1. In this case, there is an ideal design of the robot on which the software
operates, but creating this design in reality is difficult; the physical or simulated
system will differ in behavior slightly from the ideal system. 22

3 Example of the life-cycle of a particle during the execution of Algorithm 1.
When a new particle is generated: () persistent values of parameters are de-
termined before the first simulation update; () transient parameters that vary
per-control loop are perturbed from a persistent mean value at each simulation
update. 23

4 A flow chart depicting the evaluation of SIMULATORp (see Equation 17). The
flow-chart depicts how data flows to and from the robot’s control system during
integration of simulation when operating in a physically simulated environment.
Vectors u, q, q̇, f , and matrix M are the actuator torques, generalized positions,
generalized velocities, generalized forces, and generalized inertia, respectively. . 26

5 Example of how large perturbations can push the robot away from the valid re-
gion offered by feedback control and recovery behaviors. A perturbation must
be large and abrupt to destabilize a robotic system stabilized through feedback
control. An impacting event in non-smooth mechanics fits these necessary qual-
ities (e.g., unexpected contact). 31

6 The lines depict distinct particles as the systems are traced from an uncertain
initial state (black ellipse, left). Each control policy aims for the system to evolve
to the goal state (green ellipse, right) but—due to the differing evolutions of the
system resulting from parameter differences between particles—some systems
will exhibit (a) an unexpected event, or (b) an unexpected outcome of an event
(when encountering the grey “obstacle”) leading those systems to evolve to a
failed state (red ellipse, bottom). 32

7 Robots performing tasks with anticipated contact (images captured from a
video of DARPA’s robotics challenge). The control strategies quickly diverge
from plan without the anticipated contact, and the robots fail catastrophically.
The particle traces approach can be applied to identify such brittle aspects of a
plan. 37

x

8 Policy A and B attempting to grasp the ball; successful performance of the pol-
icy has the gripper maintain hold on the ball. 41

9 Policy A and B attempting to grasp the ball; failures drop the ball or push it away. 42

11 Final position of the ball after the pick behavior following Path A or B. All units
are in meters. The z-axis is vertical (i.e., positive values of z correspond to up
with respect to gravity). 44

12 All randomly sampled particles of the manipulator robot with the same config-
uration space state. 45

13 A depiction of the probabilistic geometric parameters of a legged robot: shin
length, thigh length, and foot radius. 47

14 A time-lapse of the virtual LINKS robot walking over or running into a curb
obstacle with high (4cm) and low (1cm) step heights. The robot that is not able
to walk across the curb fails at completing the task objective. 48

16 A time-lapse of the virtual LINKS robot walking over or running into a curb
obstacle given various step heights. Each particle trace is rendered along one-
second intervals. Higher step heights result in the robot standing fully on the
near side of the curb; short step heights fail to cross the curb and exhibit final
robot configurations with one or more legs on the far side of the curb. 50

17 Virtual quadrupedal robot base yaw when turning into a 3 cm tall curb obstacle.
Each line represents a particle, and each color represents a policy. Red particle
traces followed a 4 cm step height policy (marked as 0.04 m on plot) step over the
curb and continue to turn. Blue particle traces followed a 2 cm step height policy
(marked as 0.02 m on plot) strike the curb and are prevented from turning.
Green, dotted particles traces followed a 3 cm step height policy (marked as 0.03
m on plot), where step height matches the curb height (3 cm), exhibit divergent
non-failing behavior by only occasionally striking the obstacle. 51

19 Top and side views of the four particle traces for each candidate control policy.
Policies that fail are drawn with dotted lines; successes are drawn with bold
lines. The waypoints marking the robot’s path are marked as black circles. The
robot moves in the +x direction. 55

20 An isometric view of the four particle traces for each candidate control policy.
Policies that fail are drawn with dotted lines; successes are drawn with bold
lines. The waypoints marking the robot’s path are marked as black circles. The
robot is moving in the +x direction. 56

21 The LINKS robot in position to begin a walking experiment. 57

xi

22 A time-lapse of the virtual LINKS robot walking in a straight line with a single
gait duration (1.1s). Some traces fail due to modeling uncertainty. 59

24 Duration of time until a fall of the locomoting robot plotted with respect to the
gait period duration parameter. 60

25 Roll orientation data for the walking quadruped robot. Each line is labeled with
its corresponding value of the gait period duration for each policy. The dotted
line for the simulation data plots four overlaid sets of data for each control policy. 61

26 A two second time-lapse of LINKS walking with a gait period duration of: 0.6
seconds (Top); 1.0 seconds (Middle); 1.5 seconds (Bottom). The robot became
progressively less stable as the gait period duration increased. 61

27 A twenty second time-lapse of LINKS walking with different gait period dura-
tions. Each particle trace is rendered along one-second intervals. 63

28 The requirements of a target task (shaded box) plotted on top of a scale of task
difficulty (i.e., higher difficulty tasks require more power from robot actuators).
A running task may necessitate a lower maximum torque τ and higher maxi-
mum joint velocities q̇ than a task that involves lifting a heavy object. This plot
should be compared against the explanations in Figure 30. 68

29 Torque-speed tradeoff for the MX-64 and RX-24F series Dynamixel actuators. 68

30 The requirements of a target task (shaded box) sometimes lie outside of the a
robot’s capabilities, bounded in this plot by the torque-speed curve (under the
curved line). Actuators (a) or morphological parameters (b) can be modified
to increase the capabilities of the robot to fit a given task. If the robot’s mor-
phological parameters are updated carefully, the robot might become capable
of performing a target task, even with a fixed torque-speed curve. 69

31 A flowchart visualization of Algorithm 2: UPDATEMORPHOLOGY(.) with input
parameter width set to a value of 1 (no dynamic simulation). The algorithm
takes an operational space trajectory (T) as input and updates the robot’s mor-
phological parameters (p) until the set of witness functions all evaluate to non-
negative limit values (i.e., Φp(q, q̇,u) ≥ 0) during operation. The “Construct
Jacobian” block represents a condensed version of the flowchart in Figure 33. . . 74

32 Control system used by the iterative robot modification and testing algorithm.
Stabilization and error-feedback are accumulated as velocity updates and input
into inverse dynamics controller. An inverse dynamics controller is used to de-
termine the actuator torques u and contact forces acting on the robot, subject
to the state (qi, q̇i), and contact configuration at sample i. 77

33 Jacobian generation flowchart. 78

xii

34 A plot of a linear torque-speed curve for the MX-64 and RX-24F series Dy-
namixel actuators are compared against the hobby servos used in this experiment. 82

35 Control system used by the robot in situ for validating the robot morphological
improvement process. 82

36 A virtual rendering of the simulated reconfigurable robot; its geometric, kine-
matic, and inertial models closely match the physical robots in this section de-
spite differences in appearance. The base link (grey) has a box geometry; limbs,
originating from the corners of the base have a cylindrical geometry; feet have
a spherical geometry. All links also have a density that, with the calculated
volume, determine the mass of the link. Densities were selected based on the
building material used for the robot (e.g., the 3D printed robot has a maximum
link density of PVC and could be printed at lower densities by hollowing out the
link). An RGBD sensor on the “head” (unused) is rendered also. 83

37 The initial robot design used to seed the updated models. 85

39 The automated (left) and supervised (right) robot design progress over
several virtual model updates. Regions of the plot are colored according to the
percentage of the gait that the robot model can complete at the specified velocity
before violating an actuator limit. Colors blue, white, and red coincide with 0,
50, and 100 percent task completion, respectively. 87

40 The supervised modified robot design produced using the interactive design
process. 89

41 The automatedmodified robot design produced using gradient descent and no
human supervision. This design has links that are too short to fit the designated
actuators and link radii that are too wide to achieve a reasonable range of motion. 89

42 A time-lapse of the initial and modified robots trotting for 20 gait cycles. . 91

43 The reconfigurable robot in its initial small configuration. 92

45 The evolution of the trajectory with respect to the torque-speed limit witness
function boundary between the initial and modified robot designs when
following a trotting gait at 30 cm/s. The initial designs cross the witness
function boundary, while the modified designs do not. 94

46 The initial and modified robot designs resulting from a human-in-the-
loop design process with gradient descent directions suggested to the designer.
To provide a sense of scale for the updated morphological designs, model kine-
matics were updated while visualization of the original robot links remained
fixed. Visualizing these disparately sized robots with the same geometries leads
to large gaps or overlaps between links, as seen here. 96

xiii

47 Pictures from in situ testing with each robot design. The images were captured
after 10 seconds of locomotion. The robots are moving from the left side of each
image to the right; robots that are further right walked faster than robots that
are further left. Each tile is approximately 0.3 meters on a side. 97

48 The contact frame consisting of n̂, ŝ, and , t̂ vectors corresponding to the nor-
mal, first tangential, and second tangential directions (for 3D) to the contact
surface. 107

49 If the contact constraint is introduced early (left figure, constraint depicted us-
ing dotted line) the anticipated load will be wrong. The biped will pitch forward,
possibly falling over in this scenario. If the contact constraint is introduced late,
an impact may occur while the actuators are loaded. The biped on the right
is moving its right lower leg toward a foot placement; the impact as the foot
touches down is prone to damaging the loaded powertrain. 117

50 An example of a contact constraint determined at time t0 (the time of the de-
picted configuration) that could predict overly constrained motion at t0 + ∆t
(the next control loop trigger time) between two disjoint bodies: the right foot
and the skateboard. The contact constraint precludes predictions that the foot
could move below the dotted line. If the contact force prediction is computed us-
ing the current depiction (at t0) and the skateboard moves quickly to the right
such that no contact would occur between the foot and the skateboard at t0+∆t,
the correct, contact force (zero) will not be predicted. It should be apparent that
these problems disappear as ∆t→ 0, i.e., as the control loop frequency becomes
sufficiently high. 119

51 A robot’s actuators are liable to be loaded while an impact occurs if contact
constraints are introduced late (after the bodies have already contacted), as
described in Figure 49; contact constraints may be introduced early (on the
control loop before bodies contact) when the bodies are disjoint. This figure de-
picts the process of selecting points of contact and surface normals for such dis-
joint bodies with spherical/half-space (left) and spherical/spherical geometries
(right). Closest points on the objects are connected by dotted line segments.
Surface normals are depicted with an arrow. Contact points are drawn as white
circles with black outlines. 120

52 Plot of torque chatter while controlling with inverse dynamics using an indeter-
minate contact model (Stage 1) versus the smooth torque profile produced by a
determinate contact model (Stage 1 & Stage 2). 143

53 Snapshots of the simulated robotic platforms that were considered in the exper-
iments. 147

54 Controllers used in experiments of this chapter. 149

xiv

55 Snapshot of a quadruped robot in the MOBY simulator on rough terrain. 151

56 Average position error for all joints (E[|θ− θdes|]) over time while the quadruped
performs a trotting gait. 153

57 Time derivative torque when using the inverse dynamics method (ID(ti)QP,µ)
with means for mitigating torque chatter from indeterminate contact (red/dot-
ted) vs. no such approach (black/solid). 155

58 Joint trajectory tracking for a quadruped on a rigid heightmap with uniform
random friction µ ∼ U(0.1, 1.5). 158

59 Center-of-mass path in the horizontal plane between waypoints over 30 seconds.
(left) high friction; (right) low friction. The quadruped is commanded to follow
straight line paths between points {(0, 0), (0.25, 0), (0, 0.25), (0,−0.25), (−0.25, 0)}.159

60 Joint trajectory tracking for a fixed base manipulator grasping a heavy box
(6000 kg

m3) with friction: (top) µ =∞— no-slip; and (bottom) µ = 1. 160

61 Inverse dynamics controller runtimes for increasing numbers of contacts (Quad-
ruped with spherical feet). 160

62 The mean absolute joint position error for the ID constraint, ID control, and PD
control for the quadruped and UR10 robots at various timesteps. A transparent
bar indicates instability for the control at the given timestep. 168

63 The difference between different prescribed motion approaches in simulation.
x, v, M, and f are the generalized positions, velocities, inertias, and forces re-
spectively. The architecture on the right is faster, because that on the left (invrse
dynamics) solves essentially the same problem twice: once in the controller—the
contact forces must be accounted for to computer the inverse dynamics forces,
but the former are then discarded—and then again in the simulator. 170

64 The mean absolute position error of each joint on the UR10 arm as it executes
a sinusoidal motion on each joint at various timesteps. Time stepping with pre-
scribed motion was used to achieve the maximum 0.1 timestep. 171

65 A flow chart depicting how PACER (robot software) interacts with (a) a robot
in situ or (b) a time-stepping simulator. The software receives a robot’s state as
input and outputs actuator torques. 178

66 Visualization of the gait parameters for a quadrupedal gait. 180

67 Locomotion planner flowchart depicting the mode switches for a single foot over
the course of the gait. Double-outlined states are planned, while single-outlined
states are recovery behaviors. 182

xv

68 two frames of a straight-forward step using the PACER locomotion system. The
left image depicts all feet in stance phase and the right image depicts the left
front an right hind feet in swing phase. Debugging visualization information in
the images include contact normal, contact force vector, swing foot trajectories,
base link frame, global frame, expected location of the robot at touchdown, and
each foot “origin” (i.e., neighborhood around which a foot is expected to operate).185

69 Plots of timings for various quadrupedal gaits. Darkened bars indicate a stance
phase and empty regions indicate a swing phase. The percent values on the
horizontal axis refer to the progress in the gait through the total duration of the
gait period. Converting these plots to gait parameter values in Table 17: The
“walking trot” has touchdown times {50%, 0%, 0%, 50%}, duty factors for all
feet equal to 60%, and liftoff times {10%, 60%, 60%, 10%}. 185

70 Catch points: foot placement determines the moment a foothold exerts on the
majority of the mass of a robot. The selection of a foothold determines the
profile of the ground reaction forces over the duration of a support phase. A
foothold is selected that is centered about the midpoint in the stance phase, lead-
ing to a symmetric force profile in the robot’s sagittal plane. Images are copied
from Raibert (1986), Chapter 2: Hopping on One Leg in a Plane 186

71 Visualization of gait parameters of a quadrupedal gait. This this diagram labels
a projection of the same gait planning system in swing phase onto a quadruped’s
sagittal plane. 189

72 The robot predicts foot placement based on where it will be during its next
stance phase if controlled at a constant velocity ẋ{base,des}. This strategy is used
to determine the touchdown point of each swing phase (Tfoot,n , where n = |T|) 190

73 The quadruped robot R. Links (left), in MOBY (center), and GAZEBO (right). . . 191

74 A flow-chart of planning an control data as it passes through the standard set of
PACER plugins used by a quadrupedal robot. 192

75 holonomic (planar) movement [left], and non-holonomic (driving) movement
[right]. 193

76 A view of the basic gamepad controls for semi-autonomous quadrupedal loco-
motion. 194

77 A view of the gamepad controls and mode toggles for advanced gait settings;
these enable control over all relevant aspects of quadrupedal locomotion. 195

xvi

List of Tables

1 Gait parameters for the walking task performed by the simulated quadruped
when attempting to step over a curb. See Chapter 9 for a description of these
parameters. 47

2 Gait parameters for the gait-switching task performed by the simulated quad-
ruped. 53

3 Gait parameters for the walking task performed by the simulated quadruped.
See Chapter 9 for a description of these parameters. 58

4 Limits to robotic performance considered in this work. Some of these examples
may only apply to controlled or legged systems. 71

5 Limits to robotic performance considered when improving the robot. 81

6 Gait parameters for the trotting task performed by the robot. (*)min-leg-length
refers to the minimum value of lFront,ULeg + lFront,LLeg and lHind,ULeg + lHind,LLeg

between front and hind leg pairs. 87

7 Model parametrization for each robot. Masses (m) are in grams and length (l),
width (w), radius (r), and height (h) are in mm. 90

8 Gait parameters for the walking task performed by the reconfigurable robot. . . 94

9 Model parametrization and performance of each configuration of the reconfig-
urable robot. Definitions of these variables are provided in Figure 44 95

10 Floating point operations (flops) per task without floating point optimizations. . 142

11 Floating point operations (flops) with floating point optimizations. 142

12 Expected trajectory tracking error for quadrupedal locomotion (positional:
mean magnitude of radian error for all joints over trajectory duration (E[E[|θ−
θdes|]]), velocity: mean magnitude of radians/second error for all joints over tra-
jectory duration (E[E[|θ̇ − θ̇des|]])) of inverse dynamics controllers (ID(..)) and
baseline (PID) controller. 154

13 Average derivative torque magnitude (denoted E[|∆τ |]) and average torque
magnitude (denoted E[|τ |]) for all controllers. 155

xvii

14 Average contact force prediction error (summed normal forces) of inverse dy-
namics controllers vs. measured reaction forces from simulation. The quadru-
ped exerts 47.0882 N of force against the ground when at rest under standard
gravity. Results marked with a “-” indicate that the quadruped was unable to
complete the locomotion task before falling. 157

15 Mean of absolute error joint position tracking accuracy on the simulated quad-
rupedal robot . 172

16 Mean of absolute error joint position tracking accuracy on the simulated UR10
manipulator . 174

17 Gait parameters for input into the locomotion system. 181

18 A table describing the behavior of each inverse dynamics controller implemen-
tation when used to control disparate robot morphologies through different
tasks. If the robot performed the task without failing any of the performance
criteria (no torque chatter, no falling) it is marked as a pass; Otherwise, the task
will be marked as a failure for the reason noted in parenthesis.
†: Indicates which inverse dynamics implementation that were determined to
be the best controller for the example task, prioritizing: () [critical] Successful
performance of the task; () [critical] Mitigation of torque chatter (continuous
contact forces); () [non-critical] Even distribution of contact forces (distributed
contact forces); () [non-critical] Computation speed. 203

xviii

1 Introduction

A roboticist begins the process of designing robotic hardware and software by identifying a

task to automate and then conceiving of a concept for the robotic platform or control system

that will perform that task. For designing robotic hardware, this concept includes a relative size

(e.g., nanometer, centimeter, meter), and a morphological type (manipulator, quadruped, biped,

wheeled). The designer uses intuition, experience, biological inspiration, or some combination of

the three to design the robot (i.e., by selecting the kinematic, dynamic, and geometric parameters

of the robot model). The designer then uses some computational tools (e.g., finite element analy-

sis, rigid body dynamics simulation, MATLAB’s SIMULINK) to assess the feasibility of the robot

model by conducting preliminary checks to see whether the robot can satisfy its targeted function-

ality. Once the designer is confident in the model design, the robot can be fabricated for in situ

testing. Subject to performance on sample tasks, the designer will iteratively adjust the physical

parameters of the robot, presumably until performance targets are met. If instead a roboticist uses

an existing hardware platform, then a similar formula is followed to test and debug perception,

planning, and control software: the roboticist will identify a problem, design and develop soft-

ware, and run tests and experiments to assess the performance of the software on a physical robot,

and repeat.

Safely carrying out this trial and error-based robot development in situ is tedious and time con-

suming. Simulation-based testing for robot design and control system verification can conceivably

provide an effective intermediate phase between the design of a robotic system and testing in situ.

Automotive and aerospace industries utilize computer-aided engineering tools as well as in situ

unit testing to ensure that a physical system will work as expected when the final system is built

and tested. While unit testing for hardware is common in robotics, the use of simulation for test-

ing in general robotics applications has not been particularly reliable because of the complexity

of robotic systems and their environments make simultaneously fast and accurate simulation tools

difficult to develop.

1

How can simulation be improved to mitigate the problems of unpredictability and model infi-

delity on complex robotic systems? One possibility would be to increase the accuracy of simulation

through use of higher fidelity models, though such models generally require increased computation

and considerable data collection for system identification. Even so, a carefully tuned model is very

unlikely to exactly match its physical counterpart. Predictions made in simulation do not typically

match reality—a physically situated robot can exhibit behaviors that substantially diverge from

expectation. Such anomalies can lead to unpredictable robot behavior and unexpected failures that

may damage the robot or its surroundings; this unpredictability precludes extensive testing of a ro-

botic system in situ (and inhibits robots from entering human-populated environments). A second

possibility would add noise to different aspects of a simulated robot (e.g., external force pertur-

bation, injected sensor noise) in an attempt to account for infidelities. However, randomly added

noise will not necessarily improve the predictive power of a simulation: adding bias to a virtual

sensor may add uncertainty to a simulation, but unless the bias is representative, predictability will

not improve.

How can simulation be improved to encourage roboticists to adopt virtual testing and design tools

into their workflows? This thesis argues for a third option: modifying simulation to incorporate the

uncertainty resulting from model infidelity and system identification error, toward identifying gross

behavioral defects that could result from that uncertainty—essentially a parallelized version of the

second option. Predicting the divergent behavior that a robot might exhibit with simulation-based

testing offers an alternative to accurately predicting the behavior of a robot in situ.

1.1 Designing and testing robotic systems subject to uncertainty

This dissertation will show how a simulation-based testing approach can serve as a tool for virtual

robotic prototyping and testing. I describe a Monte Carlo method approach to simulation-based

testing that incorporates uncertainty into a robot’s kinematic, dynamic, and geometric models to

explore the range of possible behaviors that the physical robot may exhibit when operating under

a given control policy within a particular environment. The approach excites and then interprets

2

the output of robotic system behaviors that result from errors in system identification and state es-

timation. I then present a suite of robot design modification tools toward mitigating the occurrence

of anomalous behaviors or diminishing their negative effects once detected. I address the primary

theoretical and practical challenges toward implementing the described virtual testing and design

systems. I also provide () a description of an implementation of a Monte Carlo method framework

toward simulating many perturbed versions of a target robotic system; () experimental evidence

supporting my hypothesis that simulation can be used to predict and correct for failing or divergent

behavior of the targeted robotic system in situ; and () the algorithms necessary to realize real-time

simulation of complex robotic systems in order to facilitate () and ().

Although the concept of randomly sampling external and internal influences on systems to gauge

their behavior under non-ideal circumstances is not new—see e.g., Monte Carlo methods (Abbas

et al., 2013), sensor noise modeling (Ponton et al., 2016), control signal perturbation (Bemporad &

Morari, 2007), external force perturbation (Hutter et al., 2014)— there remain theoretical and prac-

tical challenges to implementing such an approach for robotics applications: accurately modeling

intermittent contact; ensuring that evaluations of classical mechanics formulae are computation-

ally fast (efficient) but remain stable and accurate to theoretical models; gauging which theoretical

models are true to reality and when alternative models should be used; automating the analysis of

large volumes of data to produce useful feedback to a roboticist; and developing the interactive

tools that make such a system easy to incorporate into the existing paradigms in robotics (e.g.,

robot morphological design, controller falsification, model predictive control). This thesis de-

scribes how these obstacles may be overcome and presents results from the software implemented

toward realizing computer-aided tools for robot-oriented testing and design.

1.2 Contributions and organization of chapters

The next chapter, Chapter 2, covers related works in both multi-rigid body simulation and ro-

botics that address topics similar to those in this thesis. That chapter also provides necessary

background information and theory that will be drawn upon throughout following chapters. The

3

work in this thesis builds upon work in physical simulation, robust planning and control, validation

and physical testing, automated robot design, evolutionary robotics, and the planning and control

of locomotion and manipulation for limbed robots. I seek to extend such work by providing a

framework for rapid falsification of brittle control policies (Chapters 3 and 4) and modifying a

robot’s construction to improve robustness (Chapters 5 and 6).

Chapter 3 describes the particle traces approach to simulated testing. Particle traces, also re-

ferred to as “ensembled” trajectories (Mordatch et al., 2015), refer to the output of a Monte Carlo-

method-driven approach to simulating robotic systems subject to uncertainty. The sampling-based

virtual testing approach presented in Chapter 3 perturbs robot modeling parameters, sensory read-

ings, and actuator commands to evaluate a robot’s behavior statistically over a range of inputs and

environments. The research described in Chapter 3 has worked toward understanding how multi-

rigid body simulations can better characterize the behavior of imperfectly modeled robots subject

to sensing and modeling uncertainty. When contact is expected but does not occur or when con-

tact is not expected but does occur, robot behavior is likely to diverge from plan, often drastically.

When the occurrence of such events or lack thereof is dependent on only small perturbations to the

state of the robotic system, they are referred to as grazing bifurcations. Correspondingly, Chap-

ter 3 describes an approach that uses simulation to detect possible such behavioral divergences on

real robots. This approach, and others like it, could be applied to validation of robot behaviors

(Chapter 4), mechanism design (Chapters 5 and 6), and even online planning (Section 4.3.3). The

presented approach seeks to bridge the extremes of isolated physical simulation tests and full-on

testing on real robotic hardware and is straightforward to describe, easily implemented, and uses

techniques already familiar to many roboticists.

Chapter 4 presents experiments testing and validating the performance of the particle traces

approach detailed in Chapter 3; it provides demonstrations of a virtual falsification approach to

simulation-based testing. Falsification aims to identify points of failure in planning and control

software as well as brittle regions of a robot’s parameter space. I demonstrate that combining even

coarse estimates of state and robot morphological parameters with fast multi-rigid body simulation

4

can be sufficient both to detect failure-inducing divergent robot behavior and to characterize robot

performance in the real world. Given the extensive data that such simulations are capable of gen-

erating, this approach could be used to assess risk and find and analyze likely failures. I assess this

falsification approach on both actuated, high degree-of-freedom robot locomotion examples and

a picking task with a fixed-base manipulator. The chapter concludes by demonstrating an imple-

mentation of the particle traces approach for online planning; I use this implementation to decide

the best timing for abruptly switching between two locomotion control policies. As a display of

the flexibility of the approach, I show that particle traces can also be used as a system stability

indicator which, while “weaker” than a proof, is readily applicable to the challenging problem of

analyzing high dimensional systems that undergo nonsmooth behavior.

Chapter 5 presents an algorithmic approach toward mitigating the divergent behaviors exhibited

by the robots in Chapter 4; it presents a framework in which to model the various factors that

limit the best-case capabilities of a robot. The limitations in this chapter often define the robot’s

proximity to a grazing bifurcation detected through the sampling approach presented in Chapter 3.

I describe a method for using witness functions that represent a robot’s proximity to exceeding

limitations encountered during virtual control of the robot in order to improve its model within

simulation. The presented virtual prototyping process explores the space of robot morphological

parameters to determine whether a robot’s hardware will be able to perform a task even under

ideal conditions (e.g., if balance were not an issue for a locomoting robot). If the modeled robot is

incapable of performing a target task, the virtual testing phase can determine which of the robot’s

morphological parameters limits its peak performance and how the robot might be modified to

overcome this limit. This approach can be used to maximize a robot’s performance on a task

given known failure conditions (like the divergent behavior-inducing grazing bifurcation described

in Chapter 3). I also present an algorithm in this chapter for updating a robot’s morphological

parameters to improve the robot’s ability to perform its target task or tasks.

Chapter 6 validates the virtual prototyping process from Chapter 5 by demonstrating how pre-

dicted improvements made in the presented framework can translate to improved task performance

5

and reduced risk of failure during physically situated testing. I show how this approach can inter-

actively provide a robot designer feedback on which morphological parameters are likely to limit

the performance of a robot and how to modify the design to remove or mitigate such limitations.

Through simulated prototyping and testing, I validate the model updating process by improving a

coarsely fabricated robot, built with 3D printed parts and low-cost actuators. This robot is initially

incapable of performing a walking gait due to hardware limitations and breaks after few trials; the

improved robot demonstrates durability and successful behavior after the modifications from sim-

ulated prototyping are applied. I further validate the model updating approach in a second example

that reconfigures a robot with adjustable limb length and body size toward improving locomotion

capability. The demonstrations in this chapter show how engineers can update a robot’s design and

iteratively adjust its morphological parameters to make efficient use of available hardware.

Chapter 7 presents inverse dynamics controller formulations toward providing robots with ac-

curate control in the presence of contact; it describes the theory behind producing contact force

predictions for inverse dynamics problems that are accurate to the rigid contact model. The al-

gorithms presented in this chapter make possible the more stable approach for faster, accurate

simulation presented in Chapter 8. In the context of robot control, using inverse dynamics re-

quires knowledge of all forces, including contact forces, acting on the robot. Existing such inverse

dynamics approaches have used approximations to accepted contact models to permit the use of

fast numerical linear algebra algorithms. In contrast, I describe inverse dynamics algorithms that

are derived only from first principles and use established phenomenological models like Coulomb

friction. I assess these inverse dynamics algorithms against both error feedback control and in-

verse dynamics control with virtual contact force sensing. I demonstrate that a range of inverse

dynamics controllers offer different advantages depending on the target task and robotic system.

Some inverse dynamics algorithms offer a boost in tracking accuracy in exchange for computation

time; other inverse dynamics algorithms offer fast computation but require strict conditions to be

satisfied to operate (e.g., non-redundant contact) or can make unrealistic assumptions about contact

conditions (e.g., always sticking friction). The chapter concludes by overviewing the advantages

6

and disadvantages of various inverse dynamics algorithms to guide a roboticist toward selecting

the best algorithm for their application.

Chapter 8 describes how to improve the numerical stability and thus simulation speed for robots

controlled with error feedback toward realizing real-time simulation of the complex robotic sys-

tems employed in this thesis. Roboticists modeling control of manipulator and legged robots often

assume force/torque-based control using an open-loop model of voltage, hydraulic pressure, or

pneumatic pressure to actuator torques. This chapter shows that such force/torque-based models

can lead to stiff differential equations, which are computationally inefficient to solve: relatively

small integration steps are necessary to ensure stability. I have investigated two approaches which

appear to mitigate this problem: incorporating transmission modeling (applicable only to electro-

magnetic actuators at present) and inverse dynamics control (addressed in Chapter 7). Both of these

approaches require increased computation per integration step, but this chapter will demonstrate

that the larger integration steps can still yield considerably higher simulation throughput. This

chapter also identifies research challenges with using inverse dynamics control within multi-rigid

body simulations. In particular, I examine the state of the art approach for integrating the simu-

lation subject to contact and inverse dynamics constraints, and I identify algorithmic challenges,

both theoretical and practical.

Chapter 9 describes the online locomotion planning and control software used within the experi-

ments in this dissertation. A definitive reference on programming a locomotion and control system

has been unavailable, as a “best” method of controlling a locomoting robot is an open problem.

The approach described in this chapter aims to reduce the control inputs into the locomotion sys-

tem to planar commands, similar to those of a car. My implementation of a locomotion planner for

a quadrupedal robot will provide insight into the context of the design decisions made in this work.

This chapter also presents a software foundation on top of which the more complex simulation

tools presented in this work are implemented.

I conclude the thesis in Chapter 10 with a discussion of the conclusions drawn from the experi-

mentation described in this work. This chapter discusses the implications of this work toward how

7

roboticists can use simulation to produce useful predictions for poorly modeled physical systems.

This thesis presents and validates two distinct contributions: () a method of detecting brittle con-

trol policies and robotic system parameters and () a modification strategy for mitigating those

detected failures. This chapter discusses how such tools will continue to shape robotic experimen-

tation as the need for rapid development of robots drives the virtualization of testing processes, and

the ubiquity of robots increases the need for interactive and user-friendly robot design tools.

8

2 Background and Related work

This chapter covers related work in both simulation and robotics that address topics similar

to those this thesis. The work in this thesis builds upon work in robust planning and control

(§2.1), automated robot design (§2.2), validation and physical testing (§2.2.4), the planning and

control of limbed locomoting and manipulating robots (§2.3), and physical simulation (§2.5). This

dissertation aims to extend the work referred to in this chapter by providing a simulation-based

tool for control policy fault detection and an interactive robot design suite aimed at improving a

robot’s morphology toward robust, successful designs.

2.1 Planning with uncertainty

Trajectory planning with imperfect state makes the problem of finding the best path through an

environment more difficult. Roboticist’s often attempt to find ways of faithfully representing the

uncertainty in state of a controlled system, and then integrating that system’s expected state and its

uncertainty over time as the system is controlled. The tradeoff in representing such systems is one

between the complexity of the representation and its evaluation, versus introducing a more simpli-

fied abstraction of the system’s uncertainty without excessive loss. Prentice & Roy (2009) propose

a computationally efficient method of factoring the covariance matrix representing Gaussian noise

on a linear system to combine several prediction and measurement steps subject to uncertainty into

a single operation; robotic systems subject to measurement and control uncertainty are commonly

represented as linear system with Gaussian noise for robust planning application (van den Berg

et al., 2011; Kewlani et al., 2009). Rather than using bounded Gaussian uncertainty (e.g., at three

standard deviations from the expected mean state), Marruedo et al. (2002) assume a white noise

additive uncertainty at each process model iteration, but with Lipschitz continuity bounding the

evolution of the system’s state. The linear Gaussian/additive uncertainty method assumes that the

evolution of the system over time can be approximately represented as unimodal. More complex

representations must be used when assuming that dynamical systems might exhibit bifurcation

(i.e., state divergence between systems of similar parameterization and initial state).

9

2.1.1 Robust Planning and Control Robust controllers are defined by their ability to control a

plan in the presence of bounded error to their input. At the most basic level these errors appear as

initial state and control signal perturbations, but work in robust model predictive control (MPC)

also attempts account for error in the system model. These controllers can be characterized as either

adaptive control policies that update control gains online to provide stability in a new environment

(Bemporad & Morari, 2007). Such systems are tested and/or designed through stress-testing by

perturbing a controllers assumptions of a robot’s state, control signal, environment geometry, or

contact data and finding a controller that works for the majority of cases under those assumptions.

Robust control has been used for improving the reliability of or reducing uncertainty of locomoting

systems (Wang et al., 2009; Mombaur et al., 2005; Saglam & Byl, 2014; Burden et al., 2015),

effecting grasping behaviors (Kim et al., 2013; Mahler et al., 2015; Weisz & Allen, 2012; Zheng

& Qian, 2005), and planning trajectories that reduce system uncertainty (Johnson et al., 2016).

Validating such robust controllers through stress-testing, commonly known as falsification, seeks

to find counter examples to the robustness claims of a controller (Branicky et al., 2006; Abbas

et al., 2013; Esposito et al., 2005).

While robustness can be the objective of an optimization approach this dissertation and others

(Schwarm & Nikolaou, 1999) seeks to explicitly constrain the sign of a robot’s control system for

an expected probability of failure. These methods either: () reject plans that fall below some

threshold on robustness (e.g., failure rate, proximity to failing state) or () use the constraints in

a linear or quadratic programming framework to locate a feasible, but likely sub-optimal plan for

the robotic system subject to uncertainty (Blackmore, 2006).

Sometimes the growth of state uncertainty in a controlled system is not fixed but varies, possibly

depending on factors in the environment. Patil et al. (2014) and Platt Jr et al. (2010) account for

uncertainty during planning by correlating movement through a low information environment with

high uncertainty in the outcome of the plan in an optimal control framework. Planning in the

presence of known, heterogeneous regions of rich information (high certainty) in the environment

can bias path planning toward a solution with more information, even if the path is qualitatively

10

more difficult or longer. Despite starting with high uncertainty, such plans can have a high level

of accuracy in their output outcome due to the choice of information gaining steps, or uncertainty-

reducing system evolution (Lohmiller & Slotine, 1998; Johnson et al., 2016).

2.1.2 Monte Carlo method and particle approaches The sampling-based approach to virtual

robot testing presented in this dissertation contains similar elements to Monte Carlo method and

particle-based approaches for state estimation of nonsmooth systems (Duff et al., 2011; Zhang

et al., 2013; Koval et al., 2013; Li et al., 2015a,b). The extent of the similarity is that both use

stochasticity in addition to probability distributions over state to generate time series datasets

(traces) for each perturbation to dynamical system (particle) parameters. These works expose

the interaction between dynamics and rigid contact mechanics, as developed in theory of linear

complementarity systems (Shen & Pang, 2005).

Sampling-based approaches (Monte Carlo methods) that randomly perturb the state of parti-

cles (representing a controlled system with added uncertainty) has also demonstrated as an effec-

tive means of considering state uncertainty when planning; rapidly-exploring random tree (RRT)

searches (Melchior & Simmons, 2007; LaValle & Kuffner, Jr., 2001), as well as trajectory opti-

mization (Kalakrishnan et al., 2011b) use sampling-based approaches for path planning through

high dimensional spaces with uncertainty in the process evolution. These approaches take advan-

tage of search properties of randomized sampling to explore similar plans to negotiate complex

or cluttered environments. Alternatives to Monte Carlo methods for uncertainty analysis include:

Stochastic collocation (Xiu & Hesthaven, 2005) which relies on a smooth, simplified representa-

tion of the evolution of the evaluated system over time and a metric to appraising a generated plan;

Moment methods (Walters et al., 2002) that correlate the variation of some output of interest with

respect to system parameters.

2.1.3 Simulation-based planning Twigg & James (2007) uses visual plausibility, qualitatively

undetectable perturbations to collision parameters, to generate a set of possible “worlds”. Their

idea is essentially the inverse of the sampling-based virtual testing approach presented in this dis-

sertation: where this dissertation focuses on using various perturbations to a simulation to char-

11

acterize robotic behavior and identify possible divergences, they perturb simulations to try to find

plausible, but low probability events.

Randomness in the outcome of a physical experiment and simulation might occur as a result

of inertial and geometric variations in the physical robot, external force perturbations, or state

estimate error combined with unexpected contact events that drive physical behavior away deter-

minism. This dissertation has a similar focus: generating physically plausible (instead of visually

plausible, Barzel et al. 1996) variations on the robotic system to determine the uncertainty in the

system as well as detect the non-smooth, events that lead to divergent behavior (e.g. unintended

contact).

Zickler & Veloso suggested exploring the space of control policies through high level primitives,

essentially finding a best series of actions to achieve a stated goal when controlling in the presence

of uncontrolled or antagonistic agents in the environment (2009). Similarly, Mordatch et al. pro-

posed a planner that generates a trajectory planner using simulation-in-the-loop optimization for

animating manipulation and locomotion tasks (2012; 2013). Posa et al. also proposed a contact-

invariant approach for optimizing a trajectory with intermittent contact for complex manipulation

and locomotion tasks (2014).

2.2 Automated robot controller and mechanism design

2.2.1 Evolutionary robotics Evolutionary robotics seeks to implement a morphology explo-

ration strategy of iteratively modifying a robot’s model by optimizing over a fitness function (Nel-

son et al., 2009). Constraints on robot model limits can be incorporated into the problem in two

ways; () by only generating feasible offspring so these limits are never violated; or () penalizing

infeasible offspring proportionally to their infeasibility. The latter approach allows for a larger

search space, possibly avoiding bug-trap like topologies of the constraint space or by becoming

trapped in local minima. Some work in evolutionary design simultaneously improves both the

morphology and control policy of a robot. These automated robot modification systems use ge-

ometric primitives to develop robots that accomplish simple tasks such as trotting or pushing an

12

object (Bongard, 2014; Sims, 1994).

2.2.2 Morphological computation The virtual creatures generated through a genetic algorithmic

approach (see Auerbach & Bongard 2012) shed light on a deeper insight that morphological design

may have just as much sway on certain aspects of control as modifications to the control system

itself. Changes to a robot’s morphology affect its physical behavior, but do not accrue additional

computational cost, they are computationally relevant for control and stability of the locomoting

system (Sims, 1994; Pfeifer & Iida, 2009).

2.2.3 Situated robotics & embodied cognition The interaction of a robot’s morphology with

its environment can have such a great impact on robot behavior, that these interactions must be

anticipated when developing a robotic system (Cangelosi et al., 2015; Dorigo & Colombetti, 1994).

This importance of working with situated systems is emphasized by work with embodied cognition

which has sought to understand the interaction of cognition with the sensory information from

a physical environment. The necessity of considering situated performance becomes especially

important in the context of locomoting systems that continually make and break contact with their

environments; their behavior is heavily determined by how those interactions affect the system

dynamics (Cheney et al., 2016).

2.2.4 Validity of programmed behavior in situ The T-Resilience (Transferability based re-

silience) algorithm (Koos et al., 2013a) attempts to discover compensatory behavior in unantic-

ipated situations (i.e., alternative strategies or maneuvers to achieve the same task—such as hop-

ping on one leg to locomote if the other leg is injured) toward maintaining performance between

virtual and physical (in situ) tests. Their approach searches a “transferability map” which attempts

to characterize the relation between the robot’s programming and the physically expressed char-

acteristics and behavior of a robot (Koos et al., 2013b). The virtual testing an robot modification

approach presented in this dissertation effectively seeks to improve transferability by searching for

a control policy or hardware configuration that has a shallow slope on the transferability map. This

work aims to improve transferability by avoiding sensitive regions of a control policy with respect

13

to model uncertainty. The virtual testing approach presented in Chapter 3 discovers these sensitive

areas in the local parameter space through a pseudorandom Monte Carlo method search. Chapter 5

details how updates the robot’s kinematic, geometric and inertial parameters can steer the robot’s

design away from these sensitive areas in the local parameter space.

2.3 Limbed robots: Nonholonomic control with contact

The work in this thesis focuses specifically on robots that physically interact with their envi-

ronment via contact (i.e., manipulation and locomotion). Contact is a governing factor for the

movement of legged robots about their environment and for the manner in which robot hands pick

up, move, operate, and otherwise manipulate objects in their environment. All of the experiments

in this work, whether operating robots in situ or in sim, exhibit hard-to-predict making and break-

ing of multiple contacts. The planning and control systems are thus designed to produce a motion

plan that is robust to various contact configurations.

2.3.1 Locomotion This thesis includes the implementation of a reactive operational space con-

trol strategy for locomoting systems that allows the robot to decouple the configuration of its

morphology from its end effector and base configurations (Barasuol et al., 2013) assuming all op-

erational space goals are kinematically reachable. A similar locomotion controller is presented in

PACER (Zapolsky, 2015), which borrows lessons in foot placement and simple trotting behavior

from Hengst et al. (2002), and uses similar parameterizations to other gait planning systems for

quadrupedal robots (Coros et al., 2011; Kalakrishnan et al., 2011a).

Though this transition to operational space may lead to computationally difficult to handle redun-

dancies in configuration space, these control redundancies can be dealt with through careful use of

inverse kinematics (Peters et al., 2008; Satzinger et al., 2014). The quadrupedal robots I focus on

throughout this thesis do not have redundant actuation, but these considerations are important for

more complex walking robots such as bipeds.

14

2.4 Stability analysis and control of nonsmooth systems

A number of researchers have studied stability analysis and control of nonsmooth mechanical

systems (Brogliato, 1996; Tomlin et al., 2000, 2003; Prajna & Rantzer, 2007; Prajna et al., 2007;

Leine & van de Wouw, 2008a,b; Papachristodoulou & Prajna, 2009; Posa et al., 2015), for which

hybrid dynamical systems have been a common formal model. These systems have been applied

toward the study of walking machines and robots, which this dissertation also uses as an illustrative

application.

2.4.1 Bifurcations in dynamical systems Nonlinear dynamic systems occasionally exhibit di-

verging behavior between two similar system parameterizations. Systems parameterized at these

points of divergence (bifurcations) will exhibit large changes in behavior resulting from small

deviations in state. If the parameters of such systems are subject to uncertainty, such as error re-

sulting from manufacturing tolerances or noisy sensory information, the behavior of these systems

becomes hard to predict. Locating such bifurcations in large parameter spaces and discovering

points in the parameter space that are maximally distant from all such bifurcations is one method

of limiting the appearance of divergent behavior in these systems. Smith et al. compute the “near-

maximally sized” hyper-rectangle that is centered at a fixed parameter-state point whose elements

are guaranteed to exclude all bifurcation points (2014). Their approach is based upon a branch and

bound algorithm to discover the outer bounds of the bifurcating regions of a parameter space.

Extending the detection of bifurcations in nonlinear dynamic systems to algebraically con-

strained dynamical systems offers a method of discovering points of divergent behavior in non-

smooth systems. A power system (i.e., the control system for an electrical power grid) is assessed

in (Venkatasubramanian et al., 1993). Similarly to the nonlinear dynamic systems, when the system

parameters are changed, a topological shift in the behavior of the system is triggered. For the op-

eration of controlled physical systems which are controlled about a stable equilibrium point, such

systems can lose dynamic stability when they encounter a bifurcation in their parameter space.

15

2.5 The rigid body

The work in this thesis considers robot dynamics that are well modeled by rigid bodies and

rigid or nearly rigid contact but is not generally predicated on these assumptions. Deformable

body simulations, for example might provide a more representative albeit far slower model of a

particular robotic system.

2.5.1 Rigid body dynamics The multi rigid body dynamics equation governing the dynamics of

a robot undergoing contact can be written in its generalized form as:

H(q)q̈ = PTτ + fext (1)

fext ∈ Rm is a vector of “external”, non-actuated based, forces on the m degree-of-freedom multi-

body, like gravity and Coriolis forces. τ ∈ Rnq is a vector of actuator torques (where nq is the

number of actuated degrees of freedom). H(q) ∈ Rm×m is the generalized inertia matrix of the

robotic system. P ∈ Rnq×m is a binary selection matrix, mapping the nq controlled degrees of

freedom to the m generalized degrees of freedom of the robotic system. If all of the degrees-of-

freedom of the system are actuated P will be an identity matrix. For, e.g., legged robots, some

variables in the system will correspond to unactuated, “floating base” degrees-of-freedom (DoF);

the corresponding columns of the binary matrix P ∈ R(m−6)×m will be zero vectors, while every

other column will possess a single “1”.

2.5.2 Non-smooth mechanical systems In addition to the challenges of analyzing nonlinear dy-

namics stability (of multi-rigid body systems), the problem discussed in this thesis requires con-

sideration of nonsmooth mechanical systems (Brogliato, 1996), for which velocities can change

discontinuously due to impacts and even non-impacting contact with Coulomb friction (Stewart,

2000a).

Multi body dynamics with rigid contact and Coulomb friction—which captures important stick-

slip transitions—can be modeled as piecewise differential algebraic equations (DAE). When taking

16

into account unilateral constraint (e.g., contact, joint position limits), Equation 1 extends to:

H(q)q̈ = PTτ + fext + JTfC (2)

Φ(q) ≥ 0 ⊥ f ≥ 0 (3)

fC = [fT
N fT

S fT
T]

T
(contact forces) (4)

µ2f 2
N = f 2

S + f 2
T (Coulomb friction) (5)

fC ∈ R3nc is a vector of contact forces which are decomposed into normal “N”, and tangential

“S”, “T ” directions (where nc is the number of active contacts). J ∈ R3nc ×m is a Jacobian matrix,

where J maps from generalized velocities to contact velocities and JT maps from contact forces to

generalized forces acting on the robotic system.

Contact forces are unilateral and are subject to the complimentarily constraint in Equation 3,

where Φ(q) is the gap function for the minimum distance between two geometries; Φ(q) = 0

indicates that the two geometries are in contact (the constraint is active and contact forces can be

non-zero), and Φ(q) > 0 indicates that the geometries are not in contact. Some constraints are

always active over a time interval, like bilateral joint constraints. Other constraints are only active

if certain conditions are met; e.g., a contact constraint between two bodies would only be active

when the bodies are in contact at that point and they would otherwise (i.e., without the constraint

in place) interpenetrate at that point. Other algebraic constraints acting on a robot system may

include motor torque and velocity limits, which constrain how much torque can be applied to the

system through actuation. This latter kind of problems can be formalized in the hybrid dynamical

systems context as a differential complementarity problem (Pang & Stewart, 2008):

2.5.3 Simulating multi-rigid bodies The multi-rigid body dynamics are assumed to be integrated

over interval ∆t. Using a first-order discretization of the differential algebraic equations modeling

17

the system a half-explicit, index 3 DAE (Hairer & Wanner, 1996) is defined:

qi+1 ← qi + ∆tq̇i (6)

q̇i+1 ← q̇i + ∆tf(q(t), q̇(t),u(t),λ) (7)

Φ(qi+1, q̇i+1) ≥ 0 ⊥ λ ≥ 0 (8)

where f(.) yields the time derivative of generalized velocities as a function of generalized co-

ordinates, generalized velocities, actuator forces, and some constraint forces. Spatial vector q̇ is

defined in the following section (§2.5.4). Vector λ acts as a Lagrange Multiplier (i.e., it is posi-

tive if the constraint is active and zero otherwise) and ⊥ indicates the complementarity condition

Φi(.)λi = 0. From () the distinctions between generalized coordinates and generalized velocities

and () the algebraic constraints Φ(.), it can only be expected that q(t + ∆t) ≈ q(t + ∆t)′ and

q̇(t + ∆t) ≈ q̇(t + ∆t)′: strict equality is not ensured, though ∆t � 1 and a first-order approx-

imation of the next velocity when using inverse dynamics control bounds the divergence from a

commanded trajectory when using this approach (Chapter 7).

2.5.4 Spatial and generalized velocities Note that this dissertation assumes that spatial velocities

(ẋ ∈ R6) and generalized velocities (q̇ ∈ Rnv) are not equivalent to the time derivatives of rigid

body coordinates (ẋ ∈ R7) and generalized coordinates (q̇ ∈ Rnq), respectively, as the focus of

this dissertation is locomoting (underactuated) robots and there exists no physically meaningful,

minimal representation of orientation in 3D (Kane & Levinson, 1985). The 3D orientation of the

robot’s “floating base” is represented using unit quaternions, the rotational velocity using a 3D

angular velocity vector, and convert between the two using linear operations (Nikravesh, 1988):

ẋ = N∗ẋ (9)

ẋ = N∗
†
ẋ (10)

18

and

q̇ = E∗q̇ (11)

q̇ = E∗
†
q̇ (12)

where N and E are left-invertible, block diagonal matrices dependent upon x and q, respectively,

and the † operator indicates pseudo-inversion (for which the left-invertibility implies that there will

be no residual error).

19

3 Particle traces

Planning algorithms and control approaches often rely on the fidelity of computational models to

the physical properties of a robot (i.e., inertia, kinematics, surface friction, link geometry, etc.) and

a reasonably accurate estimate of the robot’s state in the world (i.e., position, orientation, velocity).

However, the physical properties and state are not generally known to high accuracy. Fabrication

imprecision, damage to parts, control lag, noisy sensors, communication delays, and sensor drift

are only a few sources of error that can differentiate the behavior of simulated robots from re-

ality. This chapter describes an approach that uses simulation to detect possible such behavioral

divergences on real robots. This approach, and others like it, can be applied to validation of robot

behaviors, mechanism design, and even online planning, as I will show in Chapters 4 and 6.

This chapter deconstructs a Monte Carlo method approach to simulation-based robotic testing—

henceforth referred to as the “particle traces” approach—into several distinct parts: Section 3.1

overviews where errors in state estimation, control fidelity, sensor noise, and external force pertur-

bations contribute to uncertainty in a robotic system and how these factors might be represented

in simulation with a particle-driven approach; Section 3.2 discusses methods of randomly sam-

pling robot model parameters when generating particles; Section 3.3 defines a control policy in

the context of this work; Section 3.4 defines the representation of a task and its requirements for

success; finally, Section 3.5 describes the particle tracing algorithm that generates each particle

then simulates each particle trace for an interval of time while detecting divergent behavior. The

particle traces approach description is followed by discussion of the computational complexity of

Algorithm 1 that implements the approach (§3.5.1) and then a description of how particle trace

telemetry data may be processed (§3.6).

3.1 Control and simulation of robotic systems subject to uncertainty

This section presents an overview of how uncertainty, control infidelity, communication delay,

and measurement and fabrication inaccuracy in a robotic system are considered in this dissertation;

the section introduces the sampling-based “particle trace” approach. Controlling a robotic sys-

20

tem in situ—with imperfect modeling assumptions, sensor models, motor models, etc.—inevitably

leads to divergence between a robot’s intended and current state. The behavior of the robot de-

scribed by a planner and the actual behavior of the physical system diverge as these factors com-

pound and introduce uncertainty into the robotic system. Figure 1 illustrates how these factors

contribute to uncertainty in the typical sense-plan-act paradigm of robotic planning, estimation,

and control.

Figure 1: Sources of uncertainty in situ. The fidelity of a control system’s expected behavior to its performance
in situ will depend on how much each “source of uncertainty” perturbs the information passing through it.

Figure 2 illustrates where uncertainty is added to a simulated robotic system; this approach is

meant to emulate the sources of uncertainty in a situated system (as in Figure 1). Beyond the

initially evident discrepancies between these two diagrams, temporal disagreements (e.g., the du-

ration of time required to integrate the equations of motion in a physical simulation, communi-

cation delays in controllers and sensors) further separate the virtual and in situ robotic control

paradigms from one another as they contribute hard-to-model uncertainty into the robotic system

(Taylor et al., 2014). The degree of correlation between the behavior of robots simulated over

a timespan of seconds or minutes and those robots’ physically situated counterparts depends on

many factors. A somewhat flexible robot may evince little of the behavior of its virtual counterpart

simulated using multi-rigid-body dynamics, for example. Validation of multi-rigid body dynamics

simulations (and other kinds of robot simulations) is a new effort and has been explored by Tay-

lor & Drumwright (2016) and Yu et al. (2016). The following sections describe the theory and

formulation behind the particle traces approach.

21

Figure 2: Sources of uncertainty in simulation. The sampling-based approach described in this dissertation
introduces the box labeled “Fabrication”. Fabrication, in this context, performs an inverse function to “Ab-
straction + Measurement” in Figure 1. In this case, there is an ideal design of the robot on which the software
operates, but creating this design in reality is difficult; the physical or simulated system will differ in behavior
slightly from the ideal system.

3.2 Sampling-based approach

The evolution and interactions between the mentioned elements of a robot control system are

complex; quickly simulating the behavior of robots and other objects or mechanisms inevitably

requires us to rely on computationally efficient abstractions to the physical system—such as the

rigid body assumption, or Coulomb friction. Rather than introducing new parameters to these

models, or defining yet another model (increasing the complexity and number of tuned parameters

in the simulated system), a sampling-based approach is followed, toward exploring the complex

dynamics of these robotic systems. The sampling-based approach simulates many particles, each

of which is characterized by a perturbation to the calibrated or measured parameters of the models

describing a robotic system. The fundamental unit of this approach is the particle, which describes

each instance of a robot or mechanical system (i.e., environmental, kinematic, dynamic, geometric,

control, sensing, and communication) with a set of parameters.

3.2.1 Generating particles The particle traces approach perturbs the physically simulated model

of the robot (i.e., using parameters p∗), but keeps the controller’s belief about its parameters at their

expected values p0; this emulates the disagreement between the virtual model and physical hard-

ware of a robot that is expected during situated testing. The physical system or the parameters of

the physically simulated system during the execution of Algorithm 1, may differ from the kine-

22

matic, dynamic, and geometric models utilized by the controllers.

Each particle parameter is perturbed from its initial value (p0) using a sampled perturbation

before starting the simulation. A particle is then traced over time as the virtual robot follows its

control policy within simulation. Sensor noise and control lag jitter1 are additionally perturbed

on each control loop iteration. Figure 3 illustrates this sampling process for a single particle

parameter. Each particle is traced from its initial state at the current time to a user-specified time in

the future tmax. Algorithm 1 describes the process of tracing these sampled particles and processing

their telemetry.

Figure 3: Example of the life-cycle of a particle during the execution of Algorithm 1. When a new particle is
generated: () persistent values of parameters are determined before the first simulation update; () transient
parameters that vary per-control loop are perturbed from a persistent mean value at each simulation update.

3.2.2 Pseudorandom sampling of particle parameters Each particle’s parameter values are gen-

erated by pseudo-random sampling (quasi-random sampling is considered in Section 3.2.3) on each

of the uncertain elements of a robotic simulation. The usage examples in Chapter 4 demonstrate

what parameters are considered for different robots performing various tasks.

Measured, or desired parameter values (e.g., limb length, joint axis, surface friction) are sam-

pled from a Gaussian distribution about the measured or intended measurement µpi with a variance

σ(pi) determined by the precision of the measurement or method of fabrication. Transient parame-

ter values (e.g., control lag jitter, sensor noise) are perturbed by a zero mean Gaussian with variance
1Control lag jitter is a small delay that is added/subtracted from the control lag and randomly selected on each

control loop iteration.

23

σ(pi,jitter) at each observation. Persistent parameters have zero jitter.

pi(0) ∼ N (µ(pi), σ(pi)) (13)

pi(t) ∼ pi(0) +N (0, σ(pi,jitter)) (14)

Parameters resulting from an arbitrary decision over an indeterminate set of choices (e.g., impact

model, contact model) are selected randomly with uniform probability between all n choices.

pi ∼ U(1..npi) (15)

The experiments described in Chapter 4 used Gaussian and uniform distributions over wide ranges

to effect a safety factor (see Section 4.2).

3.2.3 Quasi-random sampling This section comments on the effectiveness of using quasi-

random sampling—a Sobol sequence (Press et al., 1992) in this case—to mimic the distributions

produced by random sampling while providing deterministic space coverage; quasi-random sam-

pling is appealing because it encourages a homogenous increase in sampling density throughout

the sampled volume as the number of samples increases, guaranteeing even coverage using N

samples, where N is unknown a priori. Pseudorandom and quasi-random sampling strategies

were compared on a simple example where a jointed pendulum swings past a small, fast moving

object; a very small region of pendulum initial states—nearby the specified initial state—lead to

the pendulum striking the object. When sampling from a 24 dimensional state space to detect the

existence of that small-volume event in the pendulum’s state space with a Gaussian initial state

uncertainty, both pseudorandom and quasi-random sampling strategies yielded approximately the

same results: () the approximate likelihood of striking the object given the initial state uncertainty

and () the minimum number of samples drawn before the event was first detected were approx-

imately the same between sampling strategies. Considering this preliminary result, implementing

an algorithm to produce a Sobol sequence on an arbitrarily large parameter set (up to 175 parame-

24

ters in Figure 15) could not be justified given the lackluster improvement in sampling coverage or

sampling strategy effectiveness.

3.3 Control Policy

Input forces u(t) are determined by a control policy π, which is dependent on the current state

of the system q(t) and q̇(t), time t, the duration until the next controller call ∆t, and particle

parameters p.

u(t) = πp(q(t), q̇(t), t,∆t) (16)

Definition of the specific control policy is considered separately for each robot experiment. The

control pipeline used throughout this thesis is described in Chapter 9. Some functions are evaluated

with respect to a robot’s kinematic or dynamic model with parameters p (defined by the particle);

the subscript “p” indicates with respect to which particle parameters a function or unit of data is

defined .

3.4 Tasks & Task Requirements

The particle traces approach aims to predict the range of a robot’s behavior on a task by per-

turbing the parameter values measured from the expected robotic system. Within this framework,

failing a task “requirement” indicates failure during the performance of a task, and checking against

a task “objective” indicates whether a task is successful once the system is given sufficient time

to complete the task. A task objective is defined as a state or region of acceptable states for the

robotic system and some objects in its environment. Task requirements indicate that the robot in

a particle trace has performed as expected or has diverged from plan. Task requirements indicate

that a particle trace has exhibited divergent behavior during the performance of Algorithm 1 by

checking the state, contact, and dynamics telemetry data. Examples of a task retirements (e.g.,

robot striking an obstacle or falling down) are in Chapter 4, Figure 15.

25

3.5 Physically simulating particles: The “Particle Traces” approach

The robotic system (the robot and its environment) is represented as a nonsmooth mechanical

system (Equation 2) modeled using a piecewise differential algebraic system. The process per-

formed by a simulator (e.g., contact and physics calculation, integration, collision detection) is

represented briefly as a SIMULATOR(.) function that takes a state and actuation input and outputs

the state of the system a duration of time tf into the future, and a binary vector flags:

{q(tf), q̇(tf), flags} = SIMULATOR(q(t), q̇(t),u(t), tf) (17)

The vector flags is a list of true or false return values for various checks and tests supplied by

the operator. The flowchart in Figure 4 describes how the SIMULATOR integrates a piecewise

differential algebraic system forward in time.

Figure 4: A flow chart depicting the evaluation of SIMULATORp (see Equation 17). The flow-chart depicts
how data flows to and from the robot’s control system during integration of simulation when operating in a
physically simulated environment. Vectors u, q, q̇, f , and matrix M are the actuator torques, generalized
positions, generalized velocities, generalized forces, and generalized inertia, respectively.

Algorithm 1 details an approach where success is binary: a task objective is either satisfied

or not. Some robot performance is not as easily characterized so concisely, as in a robot that

runs at half the intended speed without falling over may not have succeeded at its task, but the

robot has not failed catastrophically either. Although careful definition of a task objective will

mitigate mislabeling acceptable behavior as a failure, the particle traces approach, in its current

form, better serves as a method of fault detection for discovering and mitigation of unexpected

failure. The algorithm separates unknown reasons for failure from those which can be detected

26

Algorithm 1 {S,K,U} = TRACEPARTICLES(p0,Q,Π , N) Simulates N piecewise
differential-algebraic systems with parameters p0 and uncertainly described by Q (see parti-
cle generation Section 3.2.1) for each candidate control policy π in set Π , while considering
task requirements and the final task objective (goal state of the system). The algorithm returns
particle trace telemetry data sorted into sets S, K, and U , corresponding to successful, failed in
progress (violated requirement), and unable to be completed (unmet objective) particle trace,
respectively (see §3.6 for more information on these sets).
1: P ← ∅
2: for i ∈ {1, ..., N} do . Generate samples for N particles with randomized perturbations.
3: p∗ ← DRAWSAMPLE(p0,Q)
4: P ← {P,p∗}
5: S ← ∅
6: K ← ∅
7: U ← ∅
8: for each π ∈ T do
9: for each p∗ ∈ P do . Have all particles perform each task

10: {qp∗(t), q̇p∗(t)} ← p∗{qinit,q̇init} . Retrieve randomized initial state from particle parameters
11: t← 0
12: h← step size, where step size� 1
13: X ← ∅ . Particle telemetry “trace”
14: while t < tmax do . Simulate until task completion
15: {up0(t)} ← πp0(qp∗(t), q̇p∗(t), t) . Get input forces from policy
16: {qp∗(t+ ∆t), q̇p∗(t+ ∆t),flags} ← SIMULATORp∗(qp∗(t), q̇p∗(t),up0(t),∆t) . Integrate physical

simulation
17: X ← {X , {qp∗(t), q̇p∗(t),up0

(t)}}
18: if ∃i s.t. flagsrequirementi

= 0 then . Check whether task requirements are satisfied
19: K ← {K,X} . Violated task requirement (known failure)
20: t← t+ ∆t

21: if ∃i s.t. flagsobjectivei = 0 then . Check whether task objectives are satisfied
22: U ← {U ,X} . Task is incomplete (unknown failure)
23: else . Final state satisfies task objective (success)
24: S ← {S,X}
25: return {S,K,U}

27

from system telemetry, but not perfectly performing systems from those that just barely succeed at

a task. The particle traces algorithm is used in Chapter 4 as a method of detecting the feasibility

of a control policy or set of particle parameters when set to perform a particular task, rather than

as an indicator of control policy optimality (discussed in Chapter 4). Chapter 5 explores how the

output of Algorithm 1 can be used to iteratively improve a robot morphological or control system

design.

3.5.1 Computational Complexity On a single task with a specified maximum time for executing

that task in virtual time tmax, tracing a thread of computation will require an amount of time equal

to some scalar multiple of tmax, corresponding to the real-time factor m of the simulation (m > 1

being faster than real-time). Write-conflicts can be avoided when particle trace threads of execution

terminate and rejoin the main execution thread by assuming a fixed number of samples N and pre-

allocating memory space for storing the telemetry data of each particle. Randomized sampling

decouples individual particle trace simulation, since particle parameters and their evolution are not

interdependent, they can be executed in parallel. Any number of particle traces can be generated

and then executed in linear time O(N ·t
max

c·m) with respect to the real time factor of simulation and

the number of processor cores c available for simultaneous particle trace execution. The run time

of the particle traces algorithm for one candidate control policy is then calculated as:

t =
N · tmax

c ·m

Assuming a parallel computer with sufficiently many cores (c ≥ s), this algorithm can run in linear

time with respect to only the real time factor of the simulated system. In practice (see Chapter 4),

each particle can be integrated stably in the MOBY simulator at approximately real-time speed

(m ≈ 1): each second of time in simulation (virtual time) takes about a second to compute (wall

time). The conclusion from this assessment is that the particle traces algorithm can be run at

real time for a very large number of samples, given a known task and sufficient computational

resources—such as is becoming available with internet cloud-computing services.

28

3.6 Processing particle trace telemetry

Simulations are capable of generating huge quantities of data (for example, physical simulation

of a locomoting quadruped for one second of virtual time produced 8.5 Megabytes of logging

data in the MOBY simulator). If in the particle traces approach hundreds or thousands of particle

traces are simulated over a large interval of virtual time, the abundance of telemetry data offered

by the particle traces approach (Gigabytes of data) would a burden to sort through manually; to

address this preponderance of information, the TRACEPARTICLES algorithm categorizes particle

traces based on which task constraints they violate during execution, counting the size of the sorted

information provides a preliminary look at the virtual robot’s performance when subject to uncer-

tainty.

The output of the TRACEPARTICLES algorithm (Algorithm 1) includes three sets of particle trace

data S , K, and U . The sets S, K, and U are mutually exclusive, and they compose all members of

P .

|P| = |S|+ |K|+ |U|

∅ = S ∩ K = S ∩ U = K ∩ U

These particle trace data sets are characterized as follows: () Set S is the group of particle traces

that completed the task according to all task requirements without violating a limit function during

operation. () Set K is the group of particle traces that did not complete the task because they

violated a limit function during operation. The best way to characterize this set is as a collection of

“known failures”; these traces violated a task requirement during operation and would not be ex-

pected to perform successfully in situ. () Set U is the group of particle traces that did not achieve

the task objective after the full interval of operation, but did not ever indicate task requirement fail-

ure before particle trace termination at tmax. The best way to characterize this set is as a collection

of “unknown failures”; the outcome of these particle traces indicates that the desired task objective

was not satisfied, but the reason for this divergent behavior was not detected; all task requirements

29

were satisfied during particle trace execution. Set U includes all traces that failed to satisfy the task

objective but never violated any of the task requirements used to detect divergent behavior.

Chapter 5 demonstrates how members of set K can be used to iteratively design better mecha-

nisms and control strategies. Little can be done to address divergent behavior observed in set U

until the event (or lack thereof) that led the robot to fail to satisfy the task objective is discovered.

What is known is that these failure come about as a result of modeled phenomena (colloquially,

“known unknowns”). Unmodeled phenomenon that might result in divergent behavior in situ (e.g.

antagonistic agents in the environment, wind), or aspects of simulation that do not match reality

might be characterized as “unknown unknowns”. In part, improving simulation involves incor-

porating these “unknown unknowns” into readily computable deterministic models, so that their

effects on a robotic system can be predicted. In the context of this dissertation, the approach pre-

sented in this chapter seeks to improve the detection of the former “known unknowns” in order

to detect points of failure or brittle scenarios that a control policy might encounter (in the next

chapter, Chapter 4).

Checking the robotic system against task requirement failure at each simulation step leaves the

possibility of a failure being missed resulting from a coarse discretization of time. What if the

dynamics and kinematics could have detected a failure at time ti+ti+1

2
? Is there a sufficiently small

time interval where such events would not be missed? The solution is presented in Chapter 5;

Section 5.1.2 describes an implementation of witness functions that should be designed in such a

way to make missing an event unlikely. That section is also used to describe how to preemptively

detect task requirement failure by tracking when a robot might exceed its limitations, possibly

leading to unexpected behavior.

3.6.1 Detecting particle trace bifurcation Small modeling errors, differences in initial condi-

tions, or both should be insignificant in the presence of effective feedback control. However,

nonsmooth events can rapidly drive nonholonomic and or underactuated robots outside the region

from where a closed-loop control policy can recover (see Figure 5). For a fixed-base, fully actuated

manipulator executing a motion, an unexpected impact with an object may not be catastrophic to

30

the task performance. On the other hand, if the object is unconstrained—and underactuated—then

it may be knocked out of reach of the manipulator; if the robot has a floating base (i.e., is under-

actuated) then it may knock itself over (e.g., a mobile manipulator pulling itself off balance, or

a walking robot stubbing a toe during locomotion). All of the robot scenarios considered in this

thesis are similarly underactuated, walking robots have a floating base and fixed-base manipula-

tors attempt to pick up a floating (unconstrained) object. Therefore, a robot’s behavior might be

predictable if no unanticipated nonsmooth events occur (i.e., the nonsmooth events occur in all

particle trace simulations or occur at similar times between particles); a robot’s behavior will be

harder to predict if some particle traces experience novel nonsmooth events or if nonsmooth events

occurring in novel sequences.

(a) The trajectory of a robot stabilizing after a small perturbation. Both traces are members of S.

(b) The trajectory of a robot destabilizing after a large perturbation. The trace labeled “ideal behavior” is
a member of S, while the trace labeled “divergent behavior” would be a member of K if the “destabilizing
event” was caught as a task requirement violation, or U if the destabilization remained undetected until

the robot failed to achieve the task objective.

Figure 5: Example of how large perturbations can push the robot away from the valid region offered by
feedback control and recovery behaviors. A perturbation must be large and abrupt to destabilize a robotic
system stabilized through feedback control. An impacting event in non-smooth mechanics fits these necessary
qualities (e.g., unexpected contact).

31

The particle traces approach can identify: () novel events (e.g., contact between either two

links of the robot or between the robot and the environment); () a novel sequence of events;

() novel contact between geometric features (e.g., a face-face contact between polyhedron ver-

sus face-vertex contact); and () disparate outcomes to the same event (i.e., indeterminacy in the

evaluation of an event). Event is used to denote a mode switch, which can occur upon impacts

and upon switching between sliding, sticking, and rolling contact. Accordingly, the presented

sampling-based approach searches for both “grazing” and near-miss events (events likely to occur

or not occur in only very particular conditions), collectively known in hybrid systems literature as

“grazing bifurcations” (Budd, 1996). Grazing bifurcations are depicted in Figure 6.

Unexpected contact or lack of contact (Figure 6a) and indeterminate aspects (e.g., normal direc-

tion, restitution, friction) of a physical (e.g., contact, impact) model (see Figure 6b) might lead to

a robot’s state exhibiting divergent behavior. When a robot is operating in a region of state space

near a bifurcation, the outcome of an action by the controller will generally be challenging to pre-

dict. For example, this phenomenon might occur when a slightly longer leg than is modeled scuffs

a floor unexpectedly during a step or when a foot that is heavier than expected leads to tripping on

a step when climbing stairs.

(a) Event occurrence is sensitive to error (b) Event outcome is sensitive to error

Figure 6: The lines depict distinct particles as the systems are traced from an uncertain initial state (black
ellipse, left). Each control policy aims for the system to evolve to the goal state (green ellipse, right) but—due
to the differing evolutions of the system resulting from parameter differences between particles—some systems
will exhibit (a) an unexpected event, or (b) an unexpected outcome of an event (when encountering the grey
“obstacle”) leading those systems to evolve to a failed state (red ellipse, bottom).

32

State uncertainty might increases as a locomoting robot crosses a terrain feature or obstacle under

open-loop control. Over a single control loop iteration [t, t + ∆t], an increase in state uncertainty

could be represented as an additive noise being introduced to the process model.

qi+1 = f(qi,ui) + ε (18)

where qi is the state of a robotic system and qi+1 is the state of the robotic system after the

uncertainty-increasing event affects the system over a single control loop iteration. The expected

state of the robot (i.e., assuming no uncertainty) will differ from qi+1 by some unknown value ε.

Scattering Terrain features or group of features perturb the state of a locomoting robot crossing

them can sometimes be manifested as white noise (Qian & Goldman, 2015). The perturbation ε

applied to the robot’s process model by a scatterer could be represented as unimodal Gaussian

uncertainty:

ε ∼ N (µ, σ) (19)

Where µ and σ are the bias and variance of the state uncertainty for each unconstrained degree of

freedom of the system. A non-zero bias (µ) would indicate that there is drift in the state of robot

(i.e., white noise and control input are not the only effects on the evolution of the robotic system).

Bifurcation In the spirit of Qian & Goldman I suggest a terrain geometry may be characterized

as a bifurcator, which split (bifurcate) the expected output state of an event into two or more

distributions. A bifurcating perturbation would perhaps be manifested as a bimodal Gaussian

uncertainty. I conducted an experiment (to be described in §4.3.2) that assesses the ability of a

simulation to help locate such bifurcations. I expected that the bifurcations detected through this

method would be “grazing bifurcations”, as the model parameters were perturbed around their

expected values. If a robot exhibits divergent behavior after a perturbation, this means that the

system was close enough to a bifurcation to make the evolution of the robotic system uncertain

given a confidence in the measurements used to calibrate a robot’s model.

33

3.7 Conclusion

The particle traces approach presented in this chapter perturbs robot modeling parameters, sen-

sory readings, state estimates, and environmental parameters to evaluate a robot’s behavior statisti-

cally over a range of conditions. Since each particle trace is completely independent, particle traces

can be generated in an “embarrassingly parallel” manner. Not only is the particle traces approach

versatile and simple to implement, it can be quite fast given sufficient computational resources.

I believe the following questions now require much deeper investigation: () What dynamic sce-

narios can statistical ensembles of physically simulated robots reliably characterize (and where

will such simulations fail to characterize behavior)?; () Since simulations are capable of gener-

ating huge quantities of data, how can such state space telemetry data be efficiently “mined” and

how can that that be utilized to improve a robot’s performance? The former question is addressed

in the following chapter, where the execution of particle traces approach demonstrated in a few

robot locomotion and grasping scenarios (Chapter 4). The latter question is addressed in Chapter 5

by developing a robot and control policy design suite that utilizes particle trace data to improve

robot performance; validation of that approach is presented in Chapter 6. In the following chapter

(Chapter 4), I will demonstrate that combining even coarse estimates of state and modeling param-

eters with fast multi rigid body simulation can be sufficient to detect divergent robot behavior and

characterize robot performance in the real world.

34

4 Virtual Falsification: checking for faulty robot behavior in sim

The standard approach to validating robot behavior is simulated testing followed by in situ test-

ing. This approach does not inspire confidence, as simulations often fail to reflect real world

behavior and in situ testing is tedious and slow. This problem has instigated research into formal

verification methods for robotics (e.g., Johnson & Kress-Gazit 2015; Posa et al. 2015), which ap-

pears promising; intense study is currently attempting to scale these approaches to higher degree

of freedom systems. This chapter explores an alternative path that is straightforward, easily imple-

mented, and uses techniques already familiar to many roboticists to bridge the extremes of isolated

physical simulation tests and full-on testing using real robotic hardware. I envision a “virtual falsi-

fication” phase during robotic software prototyping and testing where points of failure in planning

and control software are identified in simulation. As the photos in Figure 7 depict, the unexpected

presence or absence of contact can cause catastrophic failure.2

The nonsmooth mechanical systems that are considered in this chapter preclude use of existing

control theoretic tools for falsification, like Branicky et al. (2006), Esposito et al. (2005), Ab-

bas et al. (2013), and Smith et al. (2014). Virtual falsification applies multi-rigid body dynamics

simulation to many perturbed versions of a robotic system (the particle traces approach). Virtual

falsification will provide an expectation of such possible divergent behaviors that the robot might

exhibit during operation (helping prevent the scenarios seen in Figure 7), even if the simulation

cannot accurately predict the exact state space evolution of the physical system. A collection of

possible robot state space evolutions may be the best that simulation can offer; even in this non-

ideal case, this chapter demonstrates that virtual testing can be very informative of control policy

robustness.

In this chapter, I demonstrate how the particle traces approach can be applied to various, high-

dimensional, non-smooth robotics applications. Section 4.1 describes a method for processing the

telemetry output of the particle traces approach toward virtual falsification. Section 4.2 describes

2Russ Tedrake claimed that this problem was a dominant cause of failure of the robots in DARPA’s Robotics
Challenge in a plenary session at Humanoids 2015.

35

how parameter distributions are selected for pseudorandom sampling when applying the particle

traces approach to the robotics scenarios in this chapter, including: in Section 4.3 the particle

traces approach is demonstrated assessing the robustness of a control policy for virtual manipulator

robot performing a picking task (§4.3.1), a virtual quadrupedal robot stepping over a curb obstacle

while performing a locomotion task (§4.3.2), and an online implementation of the approach is

demonstrated on a virtual quadruped robot switching between gait strategies (§4.3.3); Section 4.4

presents a validation experiment which demonstrates that the particle traces approach can be used

to detect whether a locomotion control policy will cause a robot to fall in situ. Results indicate that

novel, divergent behavior can be identified efficiently with even a small number of samples.

36

(a) Turning a door handle

(b) Grasping then rotating a valve

(c) Stepping out of vehicle

Figure 7: Robots performing tasks with anticipated contact (images captured from a video of DARPA’s robotics
challenge). The control strategies quickly diverge from plan without the anticipated contact, and the robots fail
catastrophically. The particle traces approach can be applied to identify such brittle aspects of a plan.

4.1 Policy scoring: success rate

In this chapter, brittle behavior is defined as a propensity of a robot’s behavior to diverge from

a desired task in the presence of small sensing, state estimation, or model calibration errors. The

particle generation process (see §3.2.1) provides randomly sampled particles that exhibit these

small errors; a robot’s propensity to diverge from a desired task can be measured by counting the

number of particle traces that exhibit an intended behavior (task objective) out of the total number

of particles traces executed (score = |S|
|P|). A control policy that exhibits an expected behavior

37

in few traces is brittle where a high rate success would indicate robustness. The particle traces

approach with policy scoring is probabilistic. There is no guarantee that the statistical distribution

of simulated behavior will be qualitatively similar to the physically observed behavior (although

such congruence has been observed in an experiment, see Section 4.4).

This “scoring” approach can help support one of two assumptions: () the robot will behave as

expected or () the robot’s behavior will rarely match expectation in situ. A representative number

of particle traces |P| would need to be generated and executed to prove a hypothesis containing

these assumptions. While “weaker” than a proof (which would require a representative sample

size), the particle traces approach with a small sample size is readily applicable to the challenging

problem of analyzing high dimensional systems that undergo nonsmooth behavior. Considering

the large parameter space of typical robotics applications (see Figure 10 with 115 parameters and

Figure 15 with 175 parameters), a statistically significant result from the particle traces approach

would require many samples. Although a statistically significant sample size is large, the particle

traces approach does not preclude the possibility of generating and executing an arbitrarily large

number of traces in real time; the complexity and process independence of Algorithm 1 permits

the parallel execution of all traces—no matter the number of samples—in real time (see §3.5.1)

given significant computational resources. Nevertheless, this chapter focuses on selecting a control

policy that maximizes the success rate (score) of a task with as many particles traces as can be

executed while permitting rapid (but still non-realtime) use of the TRACEPARTICLES algorithm on

readily accessible multi-core hardware.3

4.2 Enacting a safety factor for measured particle parameters

The particle traces approach generates particle parameters by pseudorandom sampling about

each parameter’s expected value. A parameter’s expected value might be obtained by a human per-

forming measurements on the robot offline or by the robot through automated calibration online.

Perturbations to these initial measurements are produced by drawing a particle’s parameter value

from a truncated Gaussian distribution with mean µ equal to the measured value and variance σ
32.4 GHz Intel Core i7, MacBook Pro

38

set to the expected error on the measurement (see §3.2.2). The variance of each parameter is esti-

mated conservatively; the variation in each robot parameter was determined by setting the standard

deviation of the parameter’s distribution to the most accurate figure on a particular measurement

tool (i.e., one tick on a ruler, the kerf of the blade cutting a part to length, the resolution of a 3D

printer). Enacting this safety factor accounts for measurement and fabrication error and will po-

tentially engender a range of virtual robot behaviors similar to the behavior of multiple robots built

using a single fabrication and measurement process. No attempt was made to tune the distribution

parameters further from the initial estimate, as the number of parameters in even simple robotic

systems would likely make such tuning infeasible. An example of the numerous parameters for a

quadruped (175 parameters) is listed in Figure 15.

4.3 Illustrative & motivating examples: using the particle traces approach in sim

The following sections demonstrate how particle traces can be used to efficiently locate bifur-

cating events (§4.3.2), and assess plan robustness (§4.3.1). Walking experiments were chosen to

analyze the particle traces approach because of the hybrid dynamics nature of locomotion tasks

with constant making and breaking of contact and possibility of unexpected collisions; this feature

of limbed robotic systems makes their simulation more complex than typical simulation used in

aerospace or automotive applications. A manipulation scenario is presented because simulation-

based plans for grasping have repeatedly proven to be brittle in situ (as depicted in Figure 7).

The particle traces approach provides confidence that a robot with numerous, imperfectly mea-

sured modeling parameters will perform successfully on high dimensional tasks. Later, in Sec-

tion 4.4, I validate that the particle traces approach can be used to determine a task’s robustness

on a controlled robot in situ. The following experiments use the multi-body dynamics simulator

Moby, which has been shown to produce behavior consistent with real robots (Aukes et al., 2014),

because it uses continuous collision detection (Mirtich, 1996), allowing it to locate contact events

precisely (see Zapolsky & Drumwright 2015).

39

4.3.1 Manipulator: comparing policies for picking-up a ball An eleven-jointed fixed-base ma-

nipulator robot was simulated performing a picking task (i.e., reaching, grasping, and lifting) on a

ball within its reach. Two distinct policies were followed to perform the task; the particle traces

algorithm was then run to assess each policy, each of which used forty particles. Using forty parti-

cles allowed all particle traces for a policy to be executed in approximately ten seconds. Referring

back to the expected computation time for Algorithm 1 (see Equation 3.5.1): given an eight virtual

core machine c = 8, the simulation’s real time factor for this robotm = 1, and the desired run time

per policy t = 10 seconds, and given that a policy takes about two seconds of wall-time to execute

(tmax = 2), N = 40 particle traces can be run before exceeding the expected runtime per policy.

Compared Policies Two distinct policies were followed to achieve the picking task: () Policy A

directs the gripper to move in a straight line from the gripper’s initial position, toward the expected

position of the ball; () Policy B moves the gripper to a point horizontally aligned with the ball, then

approaches to grasp the ball from its side; the policy is similar to the “orthogonal approach angle”

strategy from Rombokas et al. (2012). Both policies result in the unperturbed robot (parameterized

as p0) successfully picking up the ball. These policies might correspond to a brittle plan generated

using existing techniques. Figure 8 demonstrates the successful performance of these two policies

operating in a simulation without uncertainty.

40

(a) Policy A (b) Policy B

Figure 8: Policy A and B attempting to grasp the ball; successful performance of the policy has the gripper
maintain hold on the ball.

Task Objective & Requirements A trace was marked as successful (i.e., the robot in the trace

satisfied the task objective) if the two-second policy (tmax = 2) was completed with the gripper

grasping the ball. Figure 9 demonstrates the unsuccessful performance of these two policies under

imperfect conditions. Additionally, a task requirement was included for avoiding self-collision, in

the interest of constraining for control policy safety and realism; neither policy ever violated this

requirement. See Figure 10 for a list of the task objectives and requirements for this scenario.

41

(a) Policy A, Objective Failure (b) Policy B, Objective Failure

Figure 9: Policy A and B attempting to grasp the ball; failures drop the ball or push it away.

Particle kinematics and Parameters The virtual manipulator robot has a fixed base and eleven

dynamically simulated links connected by seven revolute joints and four revolute finger joints (one

at the base of each finger). There are a total of 115 parameters determining geometric, kinematic

and dynamic properties of the robot and its environment; these parameters are listed in Figure 10.

42

Picking task (reaching, grasping, and lifting)

Control Policy: operational space gripper trajectory

Policy A (Direct)
Policy B (Indirect)

Task Description

Objective:
Ball is in contact with gripper at time tmax

Requirement:
Non-adjacent robot links do not contact one-another (avoid self-collision)

Manipulator robot parameters

(Parameters determined at the start of a particle trace)
Model:
link density: {6×arm, 1×hand, 4×fingers}
link length: {6×arm, 1×hand, 4×fingers}
link radius: {6×arm, 1×hand, 4×fingers}
joint axis (conical error): 11×revolute joints
Environment:
contact friction, contact restitution, contact model
Initial state:
q1 · · · q11, q̇1 · · · q̇11
Other:
control lag

(Parameters determined during particle trace execution)
Encoder noise:
q1 · · · q11, q̇1 · · · q̇11, q̈1 · · · q̈11
Sensed actuator torque noise: u1 · · ·u11
Other: control lag jitter

Figure 10: This box describes relevant scenario information to execute the particle traces approach
for an 11 DOF simulated manipulator with a 4 DOF gripper performing a picking task with direct and
indirect operational space gripper trajectory plans.

Results Examples of expected and unexpected behaviors using each trajectory are depicted in Fig-

ures 8 and 9, respectively; these provide a visual representation of a particle trace for a manipulator

within this framework.

43

(a) Policy A: More Robust (b) Policy B: Brittle

Figure 11: Final position of the ball after the pick behavior following Path A or B. All units are in meters. The
z-axis is vertical (i.e., positive values of z correspond to up with respect to gravity).

Points along the bottom of the plot in Figure 11 (on the z = −0.04m plane) correspond the ball

resting on the ground; these states fail the task objective. All points not resting on the plane cor-

respond to the ball being held by the gripper and satisfy the task objective. Kinematic uncertainty

of the manipulator model results in a large variation in the position of the grasped ball after the

task is completed successfully; this results in different gripper positions for the same desired final

joint configuration (i.e., the final ball positions—held by the robot’s gripper—for successful traces

are not all overlapping). Figure 12 shows an image of all randomly perturbed manipulator robots

(one per particle) at the same joint configuration. Kinematic differences between perturbed robot

models resulted in disparate gripper positions for one set of joint angles.

44

Figure 12: All randomly sampled particles of the manipulator robot with the same configuration space state.

Reaching Policy A resulted in an 88% success rate while Policy B successfully completed the

picking task 63% of the time (a 40% performance differential). A finger inadvertently tapping the

sphere and causing it to roll out of reach was a typical cause of failure for Policy B. Figure 11 shows

the final position of the ball in each of the particle traces. This result is consistent with the premise

behind the work in Rombokas et al. (2012) (i.e., the approach to a grasp has a strong determination

of grasp success in situ); the particle traces algorithm discovered that the direct approach control

policy (Policy A) was more robust to model and state uncertainty.

Discussion of Results The results of this section reflect the expectation that small “errors” (i.e.,

state estimates, control, modeling parameters, etc.) can have large effects on manipulation. The

relative particle trace success rates between the two reaching policies reveals that the superficially

successful policies differed in their robustness; one control policy (Policy A) exhibited significantly

more particle traces that satisfied the task objective, indicating a more robust policy. Simulation

results comparing the control policies for this task indicate that Policy A might be a preferable

control policy for in situ execution; it exhibited the intended behavior in a greater number of traces,

indicating that it might be a more robust control policy. The success rate of a policy indicates

the robustness of the policy when executed in situ (or, at least, the relative robustness to other

policies), but testing that hypothesis was not the focus of this experiment. A validation experiment

was performed for the particle traces approach in situ on a different scenario (§4.4).

45

4.3.2 Quadruped: detecting grazing bifurcation Detecting and avoiding catastrophic failure

cases might not be enough to predict successful behavior; indeterminate behavior must be avoided

as well. The quadruped experiment will show that bifurcating events that do not necessarily trans-

late to failure yet might still result in unpredictable behavior in situ can be detected by observing

the telemetry of particle traces. Throughout all particle traces of this curb traversal experiment, the

robot remained upright and stable but still exhibited undesirable divergent behavior.

A twelve-jointed, floating-base quadrupedal robot was simulated from an initial position next

to a curb obstacle. The quadruped was directed to step over the curb. Differing step heights, but

otherwise identical locomotion control policies were used to control the quadruped. Figure 16

shows a time-lapse depiction of the diverging behaviors that the robot might exhibit. The robot

collides with the curb if the foot is not lifted high enough to clear the obstacle.

Grazing bifurcation might occur if the step height is approximately equal to the curb height:

small changes in initial conditions, modeling parameters, or sensing (of, e.g., curb geometry)

would determine whether or not the robot would strike the obstacle in situ. Four trials were run,

each of which used one of four preset gait control policies that attempts one, two, three, and four

centimeter step heights. The curb height was fixed at three centimeters.

46

(a) A few uncertain morphological parameters of
a quadruped

(b) Sixty-four overlaid quadruped particles with
randomly sampled morphological parameters

Figure 13: A depiction of the probabilistic geometric parameters of a legged robot: shin length, thigh length,
and foot radius.

Control policy: gait parameters Planning and control for the simulated robot was generated by

the PACER planning and control software (see Chapter 9). Gait parameters are defined in Figure 1.

Quadrupedal Gait Parameters
Parameter (unit) Value

forward velocity (cm/s) 20
yaw velocity (rad/s) -0.5

base linear offset (cm) {0, 0, 0.9×min-leg-length} (see Table 6)
base orientation offset (rad) {0, 0, 0}

step height (cm) hs ∈ {1, 2, 3, 4} (see Figure 15)
stance length (% base length) 120
stance width (% base width) 200

gait duration (sec) 0.3
liftoff timing (% gait duration) {25, 75, 0, 50}
duty factor (% gait duration) {75, 75, 75, 75}

Table 1: Gait parameters for the walking task performed by the simulated quadruped when attempting to step over
a curb. See Chapter 9 for a description of these parameters.

Task Objective & Requirements The ability of the quadruped to traverse an obstacle is assessed

using an open loop gait control policy. The goal for this scenario was for the robot to walk over the

47

obstacle. This goal is identified with a task objective that all four feet of the robot are on the far side

of the obstacle after the full 1.5 second policy duration (tmax = 1.5). A few safety requirements and

early warnings of objective failure were added to the list of task requirements as well: for safety,

a requirement failure was triggered if the virtual robot self-collided or if the robot torso came into

contact with anything (indicating either self collision or that it somehow collapsed without falling

over); task requirements that the robot never strikes the side of the curb while walking and that the

robot remain upright throughout the test were added for saving computation with early task failure

indication. A foot striking the side of the curb would indicate that a control policy did not lift the

foot high enough to step over the curb. See Figure 15 for a list of task objectives and requirements

for this scenario.

(a) High step: the quadruped successfully crosses
the curb

(b) Low step: the quadruped stubs its toe on the
curb

Figure 14: A time-lapse of the virtual LINKS robot walking over or running into a curb obstacle with high
(4cm) and low (1cm) step heights. The robot that is not able to walk across the curb fails at completing the task
objective.

Particle Parameters The virtual quadruped robot has a floating base and twelve revolute joints,

three per limb. 175 parameters determine geometric, kinematic and dynamic properties of the

robot and its environment; these parameters are listed in Figure 15.

48

Quadruped walking over a curb

Control Policy: gait control policy

Gait with step heights (cm): hs ∈ {1, 2, 3, 4}

Task Description

Objective:
Robot is upright at time tmax

All feet on far side of curb at time tmax

Requirements:
Robot remains upright
Foot does not strike curb
Body does not contact environment
Non-adjacent robot links do not contact one-another

Quadruped robot parameters

(Parameters determined at the start of a particle trace)
Model:
link density: {1×base, 4×hip, 4×thigh, 4×shin, 4×foot}
link length: {4×hip, 4×thigh, 4×shin}
link radius: {4×hip, 4×thigh, 4×shin, 4×foot}
joint axis (conical error): 12×revolute joints
Environment:
contact friction, contact restitution, contact model
Initial state:
x, y, z, ψ, φ, θ, q1 · · · q12, ẋ, ẏ, ż, ψ̇, φ̇, θ̇, q̇1 · · · q̇12
Other:
control lag

(Parameters determined during particle trace execution)
Encoder noise: q1 · · · q12, q̇1 · · · q̇12, q̈1 · · · q̈12
Force sensor noise: u1 · · ·u12
IMU noise: ẍ, ÿ, z̈, ψ̈, φ̈, θ̈
GPS noise: x, y
Magnetometer noise: ψ, φ, θ
State Estimation noise: z, ẋ, ẏ, ż, ψ̇, φ̇, θ̇
Sensed actuator torque noise: udes,1 · · ·udes,12
Other: control lag jitter

Figure 15: This box describes relevant scenario information to execute the particle traces approach for
the simulated quadruped performing the walking over a curb task with variable step height.

49

(a) Step height: 1 cm (b) Step height: 2 cm

(c) Step height: 3 cm (d) Step height: 4 cm

Figure 16: A time-lapse of the virtual LINKS robot walking over or running into a curb obstacle given various
step heights. Each particle trace is rendered along one-second intervals. Higher step heights result in the robot
standing fully on the near side of the curb; short step heights fail to cross the curb and exhibit final robot
configurations with one or more legs on the far side of the curb.

Results Traces following the three cm step-height control policy fall into two distinct classifica-

tions of behavior, corresponding to () passing the curb obstacle and () running up against the

curb obstacle and not crossing; both behaviors pictured in Figure 14 are present in Figure 16c.

The presence of these two groups of final states exhibited when following the 3cm control pol-

icy indicates that the particle parameters determine whether or not the robot is able to traverse

the obstacle. The sampling strategy uncovered the grazing bifurcation that led to these divergent

behaviors as the variance of the green paths in Figure 17 indicates. It was concluded from this

information that the three cm step-height control policy is brittle. It would be expected that the

robot’s in situ performance would be difficult to predict under this policy because the robot’s vir-

50

tual behavior is sensitive to modeling and estimation uncertainty. In contrast, the four cm step

height policy allowed the quadruped to step over the curb for almost all traces and the one and

two cm step height policy caused the robot to collide with the curb in all traces. It is reasonable

to expect that the real robot would behave predictably (usually succeeding or failing at the task)

using these policies and would behave successfully in situ with a sufficiently high step height. It

is possible that a specialized algorithm could be devised to calculate an ideal step height, possibly

even for terrain composed of varied irregular obstacles. However, the particle traces approach is

not specialized; Section 4.3.1 showed how this same algorithm and scoring technique was used

without modification to assess the robustness of a control policy for a manipulator. The particle

traces approach offers the use of computational resources and simulation as a general solution to

plan selection in complex robot scenarios.

Figure 17: Virtual quadrupedal robot base yaw when turning into a 3 cm tall curb obstacle. Each line rep-
resents a particle, and each color represents a policy. Red particle traces followed a 4 cm step height policy
(marked as 0.04 m on plot) step over the curb and continue to turn. Blue particle traces followed a 2 cm step
height policy (marked as 0.02 m on plot) strike the curb and are prevented from turning. Green, dotted parti-
cles traces followed a 3 cm step height policy (marked as 0.03 m on plot), where step height matches the curb
height (3 cm), exhibit divergent non-failing behavior by only occasionally striking the obstacle.

51

Discussion of Results Simulating many particle traces can generate huge amounts of telemetry

data. One way to manage the data output from the particle traces approach is to mine information

about the robot’s telemetry efficiently. All of the particle traces from this curb traversal experiment

can be classified into successful and failing groups by observing a short sequence of events while

the robots are starting to step over the obstacle: the contact sequence { RH–ground, LH–ground,

RF–ground, LF–ground } indicates that the robot stepped over the obstacle successfully, and the

contact sequence { RH–ground, LH–ground, RF/obstacle, RF–ground, LF–ground } indicates that

the robot did not step high enough and struck the curb. This result indicates that a witness function

tracking the robot’s distance from striking the curb might be helpful as an indicator of robustness

rather than relying on observing the final states of the robot. However, monitoring such witness

functions presents a more computationally intensive task (see Chapter 5 for a deeper look into

using witness functions as an indicator of robustness).

4.3.3 Quadruped: Verifying the stability of gait transition timing online Chapters 3 and 4 de-

scribe, implement and test a statistically based predictive framework for underconstrained, limbed

robots. Although the implemented approaches demonstrate some success in situ (§4.4), they are

predicated on the prior knowledge of the robot’s environment and some measure of that system’s

uncertainty. If virtual falsification is used online then details about the robot’s environment and the

arbitrary task it must perform must be known ahead of time—a strong assumption or new infor-

mation gained from the robot’s sensors must be incorporated into the particle trace computation in

real-time. Model predictive control (as opposed to optimal control) avoids pre-computation, and

can use the current model, initial state, and environment. This section presents a framework for

the parallelized Monte Carlo method toward online model predictive control.

Task For this virtual trial, LINKS walks forward while following a sinusoidal path between way-

points (drawn in Figure 19a). During the second gait cycle, at the gait transition point the robot’s

controller instantly switches from the starting gait parametrization to the new gait. The robot then

continues to locomote with the new gait parameterization for two seconds or until failure. Discov-

ering a stable transition between two arbitrary gait policies is an open problem in robotics and is

52

the target of ongoing study (Gehring et al., 2013). The timing of the gait transition point differed

between control policies. Parameters for the starting and new gaits are defined in Figure 1.

Starting Gait Parameters: Walk
Parameter (unit) Value

max forward velocity (cm/s) 10
max strafe velocity (cm/s) 5

max rotational velocity (rad/s) 0.5
base linear offset (cm) {0, 0, 0.75×min-leg-length} (see Table 6)

base orientation offset (rad) {0, 0, 0}
step height (cm) 3

stance length (% base length) 120
stance width (% base width) 120

gait duration (sec) 0.3
liftoff timing (% gait duration) {25, 75, 0, 50}
duty factor (% gait duration) {75, 75, 75, 75}

New Gait Parameters: Trot
Parameter (unit) Value

max forward velocity (cm/s) 50
max strafe velocity (cm/s) 10

max rotational velocity (rad/s) 1
base linear offset (cm) {0, 0, 0.75×min-leg-length} (see Table 6)

base orientation offset (rad) {0, 0, 0}
step height (cm) 3

stance length (% base length) 120
stance width (% base width) 120

gait duration (sec) 0.3
liftoff timing (% gait duration) {25, 75, 75, 25}
duty factor (% gait duration) {60, 60, 60, 60}

Table 2: Gait parameters for the gait-switching task performed by the simulated quadruped.

The virtual quadruped robot is the same as the previous curb traversal and validation scenarios;

particle trace parameters specific to this scenario are listed in Figure 15.

53

Quadruped gait-transition timing

Control Policy: gait control policy

Transition from starting gait parametrization to new gait at gait transition point (% gait
duration) gait transition point ∈ {0, 25, 50, 75}

Task Description

Requirements:
Completes two seconds of the new gait after the gait transition, without falling over.
Pitch limit (stability)
Roll limit (stability)

Quadruped robot parameters

same as in Figure 15

Figure 18: This box describes relevant scenario information to execute the particle traces approach for
simulated quadruped performing the quadrupedal gait-transition-timing task.

Results Results for the gait switch procedure using the online particle traces approach are plotted

in Figures 19 and 20.

54

(a) Side View

(b) Top View

Figure 19: Top and side views of the four particle traces for each candidate control policy. Policies that fail
are drawn with dotted lines; successes are drawn with bold lines. The waypoints marking the robot’s path are
marked as black circles. The robot moves in the +x direction.

Using only four particle traces (coinciding with the four cores of the testing machine) a few

important aspects of the tested gait transition timings were observed: () a transition time at 50%

of the way through the starting gait led to a well clustered output of final states, but no traces

satisfied the task objective. () transition times at 0% and 25% each exhibited one divergent trace

55

falling to the left of the desired path, and the rest fell to the right; none of the traces exhibited the

desired behavior after the gait transition was activated. () a transition at 75% of the way through

the starting gait exhibited successful behavior for all traces. The output from the particle traces

approach indicated that the policy with the 75% gait transition point would be most reliable in situ

due to the low variance of the final states of the traces and a high rate of success.

Figure 20: An isometric view of the four particle traces for each candidate control policy. Policies that fail
are drawn with dotted lines; successes are drawn with bold lines. The waypoints marking the robot’s path are
marked as black circles. The robot is moving in the +x direction.

The preliminary results presented in this section demonstrate that just a few particle traces can

detect disparate behaviors for a single control policy and even select a more robust choice among

a group of candidate policies. The following section describes and illustrates an implementation

of the particle traces approach for such online model predictive control.

4.4 Validation of particle traces approach in situ

This section describes validating the particle traces approach on a quadrupedal robot in situ. The

results from the experiment in this section demonstrate that the particle traces approach can be

used to detect whether a locomotion control policy might cause a robot to fall; divergent behavior

56

exhibited by the robot controlled when following a certain gait policy can be detected in simulation

using virtual falsification with even a small number of sampled particles.

4.4.1 Robot I focus on the correlation between simulated and in situ behavior for a scenario that

should be modelable using fast simulation tools. This issue is important because one can only

expect grazing bifurcations located within simulation to be informative if there is some correlation

between simulated and in situ behavior. The robot used in physical trials, LINKS, is an 18 degree-

of-freedom (12 actuated) quadruped robot constructed from Dynamixel actuators and steel links

(see Figure 53a). Base orientation was recorded by an IMU that produces samples at 100 Hz.

Modeling inaccuracies and measurement errors on even such a small robot are legion and would

include the rigid body assumption, gear backlash, communication delay, IMU sensing delay, the

rigid contact assumption, and back EMF.

(a) The LINKS robot in situ (b) A physical model of LINKS in the
MOBY simulator

Figure 21: The LINKS robot in position to begin a walking experiment.

Dynamics model The virtual quadrupedal robot was modeled using a box for the base link inertia

and geometry, cylinders for the limb link inertias and geometries, and spheres for foot inertias and

geometries. Modeling parameters for the virtual quadruped were set from measurements collected

from the LINKS robot (Figure 21a). There are no compliant elements in the structure of LINKS

(unless one counts the transmission), which should allow it to be well modeled as a multi-rigid

body with high accuracy.

57

4.4.2 Control policy: gait parameters A single gait parameter was adjusted (gait period dura-

tion) how it affected the behavior of the robot was observed over the course of the experiment. Gait

period duration was adjusted from an empirically observed open-loop stable gait (0.6 seconds per

gait cycle), upward to a value where definite failure had previously been observed (1.5 seconds per

gait cycle). Each particle trace was executed over 20s of virtual time or until a fall, and LINKS was

permitted to walk for 20s of wall time. Twenty seconds was chosen as a sufficiently long test du-

ration to excite any destabilizing events; too little time would not stress the control policy enough

and too much would be both unnecessary and time consuming from a computation perspective.

The gait parameters for this task are defined in Figure 3.

Quadrupedal Gait Parameters
Parameter (unit) Value

forward velocity (cm/s) 20
yaw velocity (rad/s) 0

base linear offset (cm) {0, 0, 0.9×min-leg-length} (see Table 6)
base orientation offset (rad) {0, 0, 0}

step height (cm) 3
stance length (% base length) 120
stance width (% base width) 200

gait duration (sec) dg ∈ [0.6, 1.5] (see Figure 23)
liftoff timing (% gait duration) {25, 75, 0, 50}
duty factor (% gait duration) {75, 75, 75, 75}

Table 3: Gait parameters for the walking task performed by the simulated quadruped. See Chapter 9 for a description
of these parameters.

Task Objective & Requirements This example was meant primarily to assess the stability of an

open loop locomotion control policy: keeping the robot oriented in a specific yaw direction was

not an objective of this task. Figure 22 demonstrates what a failure (i.e., destabilization, then a fall)

might look like for this task. Task requirements are identical to the previous curb traversal example.

See Figure 23 for a list of task objectives and requirements for this scenario. The orientation of the

robot base was recorded to detect failure during in situ trials. A configuration was labeled a fall if

the “up” axis in the robot’s local frame exceeded π
2

radians displacement from “up” in the global

frame.

58

(a) Quadruped successfully walking for several
steps

(b) Quadruped destabilizing during its third gait
cycle

Figure 22: A time-lapse of the virtual LINKS robot walking in a straight line with a single gait duration (1.1s).
Some traces fail due to modeling uncertainty.

Particle Parameters The virtual quadruped robot is the same as the previous curb traversal sce-

nario; particle parameters specific to this scenario are listed in Figure 23.

Quadruped walking on a half-space

Control Policy: gait control policy

Gaits with gait cycle duration (seconds): dg ∈ [0.6, 1.5]

Task Description

Objective:
Robot is upright at time tmax

Requirements:
same as in Figure 15

Quadruped robot parameters

same as in Figure 15

Figure 23: This box describes relevant scenario information to execute the particle traces approach
for the simulated quadruped and the LINKS robot in situ performing the walking on a plane task with
variable gait cycle duration.

4.4.3 Results A time-lapse depiction of each control policy in this scenario is presented in Fig-

ure 27. The results from this experiment indicate that when all particle traces in a trial correspond

59

to walking without a fall, LINKS does not fall in situ. Gait period durations between 0.6 and 1.0

exhibit robustness to modeling infidelities, variability in initial conditions, and errors in state esti-

mates. When some particle traces exhibited falling behavior for a control policy, the LINKS robot

walked several steps in situ before falling. When all particle traces exhibited falling the LINKS

robot fell on its first step in situ; Figure 24 shows this correlation between the duration walked

before a fall in situ and the average duration before a fall for all particle traces with respect to the

gait period duration of the locomotion control policy.

Figure 24: Duration of time until a fall of the locomoting robot plotted with respect to the gait period duration
parameter.
(× mark, dotted line) Duration of wall time until a fall of the LINKS robot.
(◦ mark, solid line) Average duration of virtual time until a fall for all particle traces.

Figure 24 plots the roll orientation data of the physical and virtual robots using the several dif-

ferent locomotion control policies. There is a qualitative agreement between these plots: the mag-

nitude of variation in roll grows as the gait period duration lengthens. Both simulated and in situ

robots fell at a 1.1 second gait period duration or longer. The particle traces approach was able

to predict that the control policy was brittle using only information from simulation; observations

from situated testing support the predictions made by the particle traces algorithm.

60

(a) in situ

(b) in sim

Figure 25: Roll orientation data for the walking quadruped robot. Each line is labeled with its corresponding
value of the gait period duration for each policy. The dotted line for the simulation data plots four overlaid sets
of data for each control policy.

Figure 26: A two second time-lapse of LINKS walking with a gait period duration of: 0.6 seconds (Top); 1.0
seconds (Middle); 1.5 seconds (Bottom). The robot became progressively less stable as the gait period duration
increased.

61

Bifurcation versus scattering The magnitude of the effects of “scatterers” and “bifurcators” (Sec-

tion 4.3.2) on the robotic system appeared to vary as a function of the “gait period duration”. Com-

paring the behavior of the control policy with a short gait period duration (0.6s) to a moderate gait

period duration (1.0s), the robot with the faster gait period took a greater number of steps—and

experienced more impacts—over the same duration of time; the shorter gait period resulted in a

larger scattering effect over the same duration of locomotion, as evinced by grater dispersion in

the region of final positions. Once the gait period duration was increased beyond 1.0s, some traces

exhibited divergent behavior to a fallen-over configuration. Increases in duration beyond 1.0s cor-

related with a stronger bifurcation effect and a greater number of particle traces that corresponded

to undesirable behavior. A continuation of the scattering effect was observed in longer duration

gaits as well. Both effects were observed between the four panes of Figure 27: () Figure 27a ex-

hibits a large scattering effect; () Figure 27b exhibits a moderate scattering effect; () Figure 27c

exhibits a lower scattering effect, but some traces exhibit divergent behavior to an absorbing state

(i.e., falling-over), resulting in failure to produce the desired behavior; () Figure 27d exhibits the

lowest scattering effect, but also the highest rate of failure.

62

(a) Gait period duration: 0.6 seconds (b) Gait period duration: 1.0 seconds

(c) Gait period duration: 1.1 seconds (d) Gait period duration: 1.5 seconds

Figure 27: A twenty second time-lapse of LINKS walking with different gait period durations. Each particle
trace is rendered along one-second intervals.

4.5 Conclusion

The experiments in this chapter have shown that it is possible to locate seemingly hard to de-

tect grazing bifurcations (i.e., ones that lie in small volumes in state space) for high dimensional

systems with relatively few particle traces. These results emphasize the need for simulated testing

involving multiple samples and perturbed robot models; without the information provided by mul-

tiple samples it would be difficult to make predictions of brittle robot behavior. The 1.1s gait period

duration control policy in Section 4.4 led a robot to fall half-way through a test in situ; that control

policy only led to particle traces that either exhibited a fail immediately or not at all. Due to the

brittleness of the control policy a single virtual test might have exhibited either of these behaviors.

The consensus of multiple particle traces was needed to determine the trustworthiness of simulated

63

results and the predictability of a robot’s behavior, before moving to physical experiments. The

results in this chapter indicate that such brittle policies can be identified quickly (i.e., with a small

number of samples).

This chapter presented experiments that demonstrate the adaptability of and then validated the

particle traces approach from Chapter 3. The next chapter, Chapter 5 presents an algorithmic

approach toward mitigating the divergent behaviors exhibited by the robots in this chapter.

64

5 Computer-aided robot improvement

Design of legged, humanoid, and other dynamically moving limbed robots is particularly chal-

lenging in comparison to many engineering disciplines because robot designs have yet to converge.

In automotive engineering, for example, the basic design principles of a car are presupposed: four

wheels, suspension, powerplant, transmission, disc brakes, etc., and automotive technology is able

to progress by making small modifications in this design space. Designing limbed robots, on

the other hand, requires simultaneously optimizing hardware and software. These factors are in-

terdependent; for example, reducing contact compliance through increased mechanical stiffness

requires a high bandwidth control system that can limit interaction forces.

The work in this chapter was initiated by the hypothesis that for limbed robots, as with automo-

biles, peak dynamic performance tends to occur as the hardware components and control strategy

push against limits. Auto racing pushes tires to their traction limits, tunes engines and transmis-

sions to optimize the powerband, and tweaks suspensions to maximize the tire contact patch. In

terms of “controllers”, drivers practice race tracks repeatedly to tune their models of tracks and

cars toward minimizing lap times.

Observations made while working to test this hypothesis indicated that optimizing robot designs

often pushes the robot into an infeasible parameter space. To make a legged robot run, for exam-

ple, acceleration commands usually push against torque limits, velocity commands push against

maximum actuator speeds, strides tend to push against joint limits (toward giving a limb time to

accelerate to maximum speed), and foot trajectories come close to scraping the ground. Traces

exhibiting behaviors that fail to satisfy a task objective or fail a task requirement in Chapter 4 can

be attributed to the robot encountering one of these limits, leading to an unexpected and possi-

bly non-recoverable perturbation to the state of the robotic system or its environment (discussed

in Section 3.6.1). Correspondingly, this work investigates a method to adjust a robot’s physical

design by altering its “parameter space” away from values that cause the robot to encounter these

limits. The model updating approach presented in this chapter is analogous to projecting an “infea-

65

sible point” in the robot control policy and design parameter space (that nevertheless corresponds

to a good objective function value) to a nearby feasible point, a common strategy for constrained

optimization.

Section 5.1 describes the constituent parts of the virtual model modification approach presented

in this chapter. Section 5.1.1 describes how task performance and divergent behavior relate to a

robot encountering a physical limitation of its hardware. Section 5.1.2 then details a robot’s prox-

imity to violating one of these physical limitations can be monitored by implementing a witness

function. Section 5.2 then describes the implementing of an algorithm applying the proposed model

modification approach; it explains how the algorithm detects stability-related divergent behaviors

(§5.2.2) and how a robot’s morphological parameters relate to its task performance (§5.2.1).

5.1 Approach

Model predictive control and numerical optimal control techniques in robotics have received

considerable attention because of their great promise: specify an objective function, constraints,

and models and—assuming the computational intractability issues can be resolved—perfect con-

trollers result. That possibility is much more palatable than the status quo, as those experienced

with writing software to control robots in unstructured, uncertain environments can attest. That

attention supposes that objective functions for robots can be readily devised. This chapter consid-

ers both a slightly different problem (assume that the hardware is modifiable, i.e., that the design

is fluid) and a different solution: use computer aided design to adjust parameters of a robotic sys-

tem (hardware design in this chapter, but hardware and software parameters generally) in order to

respect constraints affecting the performance of the robot.

The work in this section builds upon research in evolutionary robotics, physical simulation, rapid

prototyping, and operational space locomotion. This section builds upon this work by providing an

interactive robot design suite toward improving a robot’s morphology. The algorithms presented

in this chapter aim to iteratively update the morphological parameters of a robot (see §5.1) to avoid

violating a set of limitation constraints imposed on the target system (see §5.1.2).

66

Robot Morphology For convenience, kinematics, geometric shape, and inertial configuration of

a robot are referred to as its morphology, and the set of parameters for these attributes are referred

to as the morphological parameters; this vector of parameters is denoted p. Table 7 describes the

morphological parameters considered in this dissertation. The morphological parameters included

in p must be chosen with some care. The parametrization should be expressive enough to permit

describing a wide range of morphologies, while remaining sufficiently restrictive to preclude any

easily rejected morphologies.

5.1.1 Limitations on robot performance There is a volume of operational space—this disserta-

tion expands the common definition of this term to encompass not just points in 3D, but twists and

wrenches as well—that the robot must be able to access to achieve the desired aim of a given task

(e.g., such as the task trajectory in Section 5.1.3). If a robot is unable to perform that task, then

it must be the case that either some operational space states defined in the task are inaccessible to

the robot due to some limitation acting on the physical aspects (geometric, kinematic, dynamic)

of the system (e.g., maximum torque, kinematic reachability limits), or that the robot has entered

an absorbing state in operational space (e.g., fallen over)—assuming the robot’s control system

is not capable of self-righting maneuvers. Task requirements indicate whether such failures have

occurred and are defined qualitatively in each experiment.

A robot should be physically capable of performing a prescribed task once the trajectory and

actuator forces required by a control policy to execute that task do not violate any limitations.

In other words, a task is feasible with respect to a robot once all states and actuator forces of

the control policy satisfying the task lie within the region bounded by that robot’s limitations. A

robot’s limitations are represented as a set of algebraic constraints bounding a feasible region of

generalized coordinates, generalized velocities, and actuator forces. Figure 28 illustrates a region

of the actuator-constrained torque-speed space that a particular task might require.

67

Figure 28: The requirements of a target task (shaded box) plotted on top of a scale of task difficulty (i.e., higher
difficulty tasks require more power from robot actuators). A running task may necessitate a lower maximum
torque τ and higher maximum joint velocities q̇ than a task that involves lifting a heavy object. This plot should
be compared against the explanations in Figure 30.

A simple example of a robot limitation is the maximum torque output of an electromechanical

actuator. Given such an actuator, there exists a speed beyond which torque output is zero, much

like pedaling a fast bicycle in a low gear produces little effect. This mapping between torque output

and actuator speed is typically referred to as the “torque-speed” curve (see e.g., Figure 29).

Figure 29: Torque-speed tradeoff for the MX-64 and RX-24F series Dynamixel actuators.

Complexity of topological updates Adding joints or links to a robot’s topological structure in-

troduces complexities in planning and discontinuous jumps in witness function value. This dis-

sertation considers only a fixed topology (one base with four, three-jointed limbs) and adjust the

geometric, inertial, and actuation parameters of that model.

The robot modification approach presented in this chapter focuses on updating morphological

68

parameters to make performance of the tasks like robotic running feasible given fixed torque and

speed limits: rather than consider swapping out actuators (with effects shown in Figure 30a),

altering continuous parameters was considered (with effects shown in Figure 30b).

Given a fixed topological structure, there are two types of modeling parameters that are con-

sidered: continuous and discrete. This dissertation focused on updating continuous parameters;

updating discrete parameters would allow modifying gear ratios and link fabrication materials, for

example.

(a) Actuator Modification
Bottom Left: A robot whose actuators are not suitable to perform
the target task will not fit the requirements of the task within its
capabilities (under the torque-speed curve).

Top Left: Increasing the maximum torque of a robot’s actuators
τmax enables the robot to achieve tasks that necessitate higher force
output, but at the same actuator speeds as before the modification.

Bottom Right: Increasing the maximum actuator velocity q̇max
enables the robot to achieve tasks that necessitate higher speeds, but
subject to the same actuator forces as before the modification.

Top Right: Increasing the maximum torque and maximum velocity
enables the robot to perform all required force and speed
requirements of the target task.

(b) Morphological Parameter Modification
Bottom Left: A robot whose actuators or morphology are not capable of
performing the task will not be able to perform the motions required by the
task.

Top Left: An increase in leg length, foot radius, or foot friction will result in
a decrease in the actuator speed requirements for a task by providing the
robot with a longer lever or greater reaction force when interacting with the
environment.

Bottom Right: Decreasing leg length, foot radius, or foot friction will
decrease the actuator torque requirements of a task by providing the robot a
shorter lever or less reaction force when interacting with the environment.

Top Right: Adjusting the robot morphology in a directed manner will allow
the robot to fully utilize its actuator capabilities, permitting it to avoid
encountering a limitation while performing the motions required to realize a
task.

Figure 30: The requirements of a target task (shaded box) sometimes lie outside of the a robot’s capabilities,
bounded in this plot by the torque-speed curve (under the curved line). Actuators (a) or morphological param-
eters (b) can be modified to increase the capabilities of the robot to fit a given task. If the robot’s morphological
parameters are updated carefully, the robot might become capable of performing a target task, even with a
fixed torque-speed curve.

69

5.1.2 Quantifying robot limitations for computer-aided design modification The algebraic

functions representing mechanical limits in constrained rigid body dynamics (see definition of a

DAE in Section 2.5.2) were found to often have a physical parallel that contributes to the dynamic

stability of a robotic system—contact can restore balance and friction provides traction and ap-

plication of contact force—permitting stabilization maneuvers such as catch-stepping and capture

point stabilization (Raibert, 1986; Koolen et al., 2012); lack of contact provides freedom of motion

for balancing behaviors such as the hip and angle strategy for humanoid balancing (Stephens &

Atkeson, 2010b), as well as the ability to move to a capture point.

When a dynamical system switches modes (i.e., a constraint becomes either active or inactive),

the simulated robotic system can experience a sudden, non-smooth jump in its state. Such a dis-

continuous jump in the dynamics might destabilize the robotic system, causing it to diverge from

its expected behavior, sometimes catastrophically. This work attempts to correct for or mitigate

the effect of such destabilizing behavior. A robot’s design is modified to exhibit robust behavior

by choosing models that minimally experience unanticipated mode switches.

Other limitations that are less apparent than the torque-speed trade-off may be equally important

when gauging the capabilities of a robot. For example, a robot must avoid front-back foot collisions

at high locomotion speeds when performing asymmetric gaits about the sagittal-plane (e.g., during

walking and trotting). Additionally, certain robot designs may impose kinematic limitations on

how high or far a robot can reach, preventing it from performing certain pick-and-place tasks, for

example. A list of the robot limitations that have been considered in this work are listed in Table 4.

A robot’s limitations are represented in this model modification approach using inequality con-

straints. Where the task requirements and objectives in Chapter 3 are boolean, witness functions

provide a set of algebraic constraints bounding a feasible region of generalized coordinates, gen-

eralized velocities, and actuator forces. A witness function produces an m-dimensional vector

of unit-less “distances” representing how close each constraint is to being exactly satisfied. The

70

Limits
Identified failure-inducing limits

Parameter (unit) number of constraints
Roll limit of base (stability) 1
Pitch limit of base (stability) 1

Plan leaves kinematic reach of robot 1
Actuator torque & speed limits Njoints

Actuator angle limits Njoints

Self Collision (non-adjacent links)
(
Nlinks

2

)
Non-foot ground Collision Nlinks −Nfeet

Unexpected foot collision (scuff or stub) Nfeet

Table 4: Limits to robotic performance considered in this work. Some of these examples may only apply to controlled
or legged systems.

witness functions depend on the robot’s state {q, q̇} and input u:

Φpj(q, q̇,u) ≥ 0 (20)

A witness function Φp : Rnq×nv×nu → Rm (where nq is the dimension of robot generalized coor-

dinates, nv is the dimension of robot generalized velocities, and nu is the dimension of the control-

lable generalized forces) informs us whether on of these limitations has been reached or exceeded.

Auxiliary variables are sometimes added to a simulated system to make building good witness

functions that does not change rapidly over a small time interval easier, which would reduce the

likelihood of missed limit violations.

If there exists an index j such that constraint Φpj < 0, constraint j has been violated. Negative

witness function values indicate by how far a limit has been exceeded, while positive values repre-

sent distance from the limit boundary. The model modification approach presented in this chapter

aims to transform the generalized coordinates, velocities, and actuator forces or the definitions

of these spaces of a robot such that the new coordinates, etc. lie within their respective feasible

regions while the robot performs a given task.

5.1.3 Control Policy: task trajectory The present focus of updating a robot’s morphology leads

to a preference that the operational space trajectories produced by a robot’s control policy remain

constant as the robot’s shape is adjusted; the robot’s feet or hands should move along the same

71

trajectory in the world (i.e., aim at the same intractable objects or terrain features), even though its

configuration space trajectory might change as morphological parameters are updated. The task

trajectory T is a vector of operational space states for key links of the robot (as defined by the

user).

T ≡


x1

x1


T

· · ·

xi
xi


T

· · ·

xn
xn


T

T

(21)

The vector of states is sampled from a locomotion control policy (Chapter 9) at the control loop

frequency of the target physical robot’s control system. For a locomoting quadrupedal robot, these

key links might be the base and each foot:

x ≡
[
xT

base,x
T
LF foot,x

T
RF foot,x

T
LH foot,x

T
RH foot

]T
(22)

x ≡
[
xTbase, x

T
LF foot, x

T
RF foot, x

T
LH foot, x

T
RH foot

]T
(23)

Where xbase ∈ SE(3), xbase ∈ R6, xfoot ∈ R3, and xfoot ∈ R3 for a floating-base quadrupedal

robot with three actuated joints on each leg. In order to follow an assigned task trajectory, the

robot must convert the operational space state [xT
i , ẋ

T
i]

T at discrete sample i in the task trajectory

T (with time ∆t � 1 between successive samples) to generalized state [qTi , q̇
T
i]

T and a set of

actuator forces ui to reach the next generalized velocity q̇i+1 defined by the spatial link velocities

ẋi+1. Generic inverse kinematics (IK) and inverse dynamics (ID) functions are defined to represent

these calculations with respect to a robot parameters p:

{qi, q̇i} = INVERSEKINEMATICSp(xi, ẋi) (24)

{ui} = INVERSEDYNAMICSp(qi, q̇i, q̇i+1,∆t) (25)

72

5.2 Iterative robot design

Figure 31 depicts a flow chart of the model modification process as the robot iterates through the

task trajectory; the following steps are taken:

1. The IK problem is solved for the current operational space configuration and spatial velocity

(i.e., at discrete sample i) and the next operational space configuration and spatial velocity

(i.e., at discrete sample i+ 1).

2. Actuator torques (ui) are computed that will yield the next (i.e., at discrete sample i+ 1) de-

sired generalized velocity using ID and the configuration space state and desired generalized

velocity at iteration i.

3. The robot applies actuator torques ui to the robot yielding generalized state {q′, q̇′}, with

the expectation that the discretization is sufficiently small such that q ≈ q′ and q̇ ≈ q̇′.

4. The witness functions are evaluated against actuator commands and desired configuration

space state (at sample i) and desired next state (for i+ 1).

5. If a witness function becomes negative during the robot’s virtual performance of the task

from sample i to sample i+ 1, the model is updated to correct the limit violation.

For example, if an actuator torque limit violation is observed at sample i (uji > uj
max), the robot’s

morphological properties can be updated to produce a lower magnitude uji toward realizing the

operational space trajectory (by, e.g., reducing leg length, decreasing foot friction, or reducing

the weight parameterization for the joint’s child links). Algorithm 2 incrementally pushes the

parameterization toward the feasible region.

Finally, noting a few subtle aspects of the “controller” in Figure 31: () the controller need only

handle small disturbances because the state is reset to {qi, q̇i} on each iteration; () no gain tuning

is necessary; and () the ID controller can assess the peak performance of the robot without specific

knowledge of the servo-motor control loop gains on actual hardware, while the error-feedback

controller used in situ on the robot is expected to track trajectories with some error.

73

Figure 31: A flowchart visualization of Algorithm 2: UPDATEMORPHOLOGY(.) with input parameter width
set to a value of 1 (no dynamic simulation). The algorithm takes an operational space trajectory (T) as input
and updates the robot’s morphological parameters (p) until the set of witness functions all evaluate to non-
negative limit values (i.e., Φp(q, q̇,u) ≥ 0) during operation. The “Construct Jacobian” block represents a
condensed version of the flowchart in Figure 33.

74

Difficulty scaling Constraint violation might be large immediately upon executing a difficult task

with a novel robot design. For example, if the actuators of a walking robot are very weak (i.e., can

supply very little torque before reaching saturation), large torque limit violations might immedi-

ately be observed for this robot when attempting a running gait.

To address this problem, the user can bootstrap the robot modification process by progressively

scaling the task “difficulty”. For a pick-and-place task, this may entail starting with an easier

task such as lifting a lightweight object or performing slower movements; such bootstrapping is

straightforward for locomotion tasks where lower velocity gaits are typically easier to perform.

Once the robot can successfully complete an easier version of the task, the user would repeat the

process on progressively harder versions of the task.

Algorithm 2 {p} = UPDATEMORPHOLOGY(p0,T,Φ,width) Starting at initial morphological parameters
p0, updates p to keep all elements of Φ(q, q̇,u) non-negative while following operational space task trajectory
T1..N . The algorithm resets the state of the robot to the desired state after simulating the system over width
discrete increments (i.e., a sliding window) of the task trajectory. Returns the new set of morphological parameters
p.

1: p← p0
2: i← 0
3: do . (see §5.2)
4: {xi, ẋi} ← Ti

5: {qi, q̇i} ← INVERSEKINEMATICSp(xi, ẋi)
6: j ← i
7: do . Sliding window inner loop §5.2.1
8: {xj+1, ẋj+1} ← Tj+1

9: {qdesj+1, q̇
des
j+1} ← INVERSEKINEMATICSp(xj+1, ẋj+1)

10: {uj} ← INVERSEDYNAMICSp(qj , q̇j , q̇desj+1,∆t)
11: {qj+1, q̇j+1,−} ← SIMULATORp(qj , q̇j ,uj) . Integrate physical simulation (Equation 17)
12: `p ← Φp(qj+1, q̇j+1,uj) . Evaluate witness functions
13: if ∃k s.t. `p,k < 0 then
14: J← Construct Jacobian (see §5.2.2)
15: ∆p̂← −J†`p
16: print: Suggested update: ∆p̂
17: α← input: Scale update by value (α� 1).
18: ∆p← α∆p̂
19: p← p+ ∆p . Update robot parametrization.
20: j ← i . Reset current window
21: else
22: j ← j + 1

23: while j < i+ width
24: i← i+ 1
25: while i < N
26: return {p} . Successfully updated robot to perform task T.

75

Algorithmic correctness There do not exist tractable algorithms for determining whether one or

more nonlinear inequality constraints (i.e., limit functions) are satisfiable over a discretization of a

continuous trajectory; this problem generally corresponds to a non-convex optimization problem.

In the absence of a tractable approach to an optimal solution, several alternatives are considered,

including optimizing parameters over the entire execution of a trajectory (somewhat similar to

trajectory optimization) and optimizing parameters over a “window” sliding over the trajectory.

The latter approach was explored in this work, since it was simpler, with the understanding that

this approach was liable to modify the parameters one way at time ta during the trajectory execution

only to revert this change at time tb > ta. This phenomenon was not encountered when testing

the model modification approach but note that the user supervision would be able to prevent such

regressions.

Control system (for improvement algorithm) The algorithm in Figure 31 checks each portion

of the trajectory for validity by generating desired configuration space states and commands from

a provided operational space trajectory T. The robot is initialized at the desired state from Ti,

then controlled to reach the subsequent desired state at Ti+1. The algorithm uses a closed loop

error-feedback controller that applies feedback desired velocity updates to an inverse dynamics

controller with contact force prediction (see e.g., Righetti et al. (2013)) to instantaneously (i.e., in

one control loop iteration) correct for trajectory tracking error using actuator forces.

76

Figure 32: Control system used by the iterative robot modification and testing algorithm. Stabilization and
error-feedback are accumulated as velocity updates and input into inverse dynamics controller. An inverse
dynamics controller is used to determine the actuator torques u and contact forces acting on the robot, subject
to the state (qi, q̇i), and contact configuration at sample i.

5.2.1 Considering coordinate based witness functions with a “sliding window” The flowchart

in Figure 31 depicts a flowchart visualization of Algorithm 2 with its input parameter width set to a

value of 1, corresponding to no dynamic simulation; this means that input forces and goal state are

checked against the limit functions and then the robotic system is reset to the next desired state. In

order to consider coordinate and stability based witness functions (e.g., unwanted contact, the ZMP

leaving the stable region within the contact polygon, missed contact, and others listed in Table 4),

drift in the robot’s state away from plan must be considered (due to e.g., external perturbations,

poor model fidelity, or bad control input). The sliding window inner loop of Algorithm 2 allows

the dynamical system to evolve according to its control policy (desired trajectory in this case) for a

duration of time; allowing such divergences to take effect permits the detection (and mitigation of)

coordinate based limit violations. The updating process demonstrated in Chapter 6 only requires

that width = 1 because desired velocity and input torque are not coordinate based limitations and

can be checked instantaneously.

5.2.2 Relating witness functions to design and controller parameters Modifying the morpho-

logical parameters affects when and whether the limits in Table 5 become violated when executing

a desired trajectory. Each model update of the robot modification process requires constructing

77

a gradient for how each model parameter affects each active limit function at the moment in the

task where a limit function first becomes active. Gradient vector ∇jΦmodel(i)(q, q̇,u) is computed

using finite differencing (as described in Figure 33) with respect to modeling parameter j of m

total parameters.

Figure 33: Jacobian generation flowchart.

The limit gradients are concatenated to form a limit Jacobian, JΦ, that describes the slope of

the constraint-parameter space at a specific point in state space (q, q̇) under the current model

parameters (pi).

J =

[
∇0Φpi(q, q̇,u) · · · ∇mΦpi(q, q̇,u)

]
The gradient descent direction −J†`, where † is the pseudo inversion operator, yields an update

direction to the robot modeling parameters that should decrease the limit function violations (` =

Φpi(q, q̇,u)). If J defines an under-determined system (i.e., there are many parameter updates

78

that produce the same effect on the active witness functions and JTJ is not invertible) z = J†b

will evaluate to the minimum Euclidian norm solution of Jx = b (i.e., will produce the minimum

model parameter update to correct the limit violation). The current modeling parameters (pi) can

then be updated to those at the next iteration pi+1:

pi+1 = pi − αJ†`

for α � 1 (α is tuned manually). The designer incorporates expert knowledge into this tuning

stage, weighting the gradient update and perhaps making additional modifications to the robot

model. Specifically, a designer is permitted to roll-back an update or apply either of two changes

repeatedly to the update: () zeroing any element of the parameter update vector; () applying

front-hind symmetry to a specific parameter’s update.

5.3 Conclusion

The notion of “performance” is often challenging to condense to a single scalar value but hard

limits (like joint range-of-motion limits, torque limits, and contact constraints) are straightforward

to specify. This chapter used that idea and a human designer’s intuition and analysis to guide

a robot’s hardware and software toward better performance; computational tools can keep those

designs inside the space that the hardware is capable of working effectively within. Whether ro-

bustness is dominated by a control policy or a robot’s design is uncertain; the systems are coupled

and the robustness of one system can not be verified without the presence of the other. The fol-

lowing chapter, Chapter 6 will evaluate the performance of the model modification process from

this chapter on low-cost quadrupedal robots, with the goal of helping them walk faster and exhibit

fewer failures; it demonstrates how the morphological parameters for various locomoting quadru-

pedal robots can be adjusted with the presented robot modification process to improve performance

in situ.

79

6 Virtual Prototyping: simulation-assisted robot design

When robots engage in highly dynamic activities like running, performance often bumps against

one or more geometric, kinematic, or dynamic constraints. Electromagnetic actuator torque-speed

curves typify such a tradeoff: enough actuator torque is required to accelerate a legged robot to a

run, but gearing a robot to a higher gear ratio to produce more torque reduces maximum actuator

velocity, and by extension, maximum forward speed.

The particle traces approach described in Chapter 3 helps detect failures in a control policy that

result from robot modeling error, state uncertainty, control delay, etc. (i.e., infidelity in the virtual

representation of a real system). The design improvement tool presented in Chapter 5 assesses

the performance of a robot on a task and then updates the robot’s morphological parameters to

avoid dangerous regions of its state and control space. This chapter uses the robot modification

algorithm from Chapter 5 to analyze the trajectory that a robot would execute repeatedly in or-

der to perform a task (quadrupedal locomotion, in the target application). As the robot virtually

executes an operational space trajectory the robot’s control system determines the motor torques

and generalized configurations and velocities necessary to move between each successive pair of

points in operational space. If one of these iterations violates one of the limits set on the robot, the

model modification software updates the robot’s morphological parameters to correct for the limit

violation.

Two example applications for the model modification approach are presented in this chapter to

illustrate the effectiveness of the approach; Section 6.1 presents an overview of the experimen-

tal setup and procedure common to both testing scenarios. The first example demonstrates the

design of a 3D printed quadruped that is too weak and delicate to locomote with an arbitrarily

assigned morphological design (§6.2); the second example demonstrates the redesign of a physi-

cally reconfigurable quadruped to improve its initially poor locomotion performance (§6.3). The

chapter concludes in Section 6.4 with a discussion about how the design improvements made to

robots in this chapter can improve robot robustness and be used to mitigate the various divergent

80

behaviors detected by the particle traces and control policy falsification procedures presented in

this dissertation.

6.1 Overview of virtual and in situ tests

Focusing on torque-speed curves as just one application, this chapter demonstrates how the

model modification process is able to adjust a legged robot’s parameterization from a point on

the outside of the feasible torque-speed curve to within the feasible torque-speed region, all with-

out compromising locomotion performance.

6.1.1 Robot Limitations Actuator torque-speed curves are used in this chapter as one commonly

encountered example of the “limitations” referred to in Section 5.1.2. Both assessed robots were

assembled from inexpensive hardware fabricated using simple manufacturing techniques; each

robot utilizes twelve actuators with independently-defined torque-speed constraints (see Table 5).

One of the robots (§6.3) uses two types of actuators, giving different joints different actuation

limitations.

Limits
Identified failure-inducing limits

Parameter (unit) number of constraints
Actuator torque & speed limits Njoints

Actuator angle limits Njoints

Table 5: Limits to robotic performance considered when improving the robot.

The proximity that each of the robot’s actuators is to violating each of these actuator limitations

is tracked by a piecewise witness function Φi for each actuator i ∈ {1, ..., 12}:

Φi =



τmax
i − vi(τmax

i /vmax
i)− τi ≥ 0, if vi ≥ 0, τi ≥ 0

τmax
i + vi(τ

max
i /vmax

i)− τi ≥ 0, if vi < 0, τi ≥ 0

−τmax
i − vi(τmax

i /vmax
i) + τi ≥ 0, if vi ≥ 0, τi < 0

−τmax
i + vi(τ

max
i /vmax

i) + τi ≥ 0, if vi < 0, τi < 0

The witness function constrains a volume of the torque-speed space and includes the origin; it

81

returns a non-negative value for all torque and speed values between each curve segment and the

origin. Figure 45 shows an example of the torque-speed limit witness function plotted with the

torque-speed curve. The positive quadrant of this torque-speed curve constraint is illustrated in

Figure 34. Figures 38 and 44 specify which of these constraints is used in each experiment.

Figure 34: A plot of a linear torque-speed curve for the MX-64 and RX-24F series Dynamixel actuators are
compared against the hobby servos used in this experiment.

Gait The following two validation sections use a locomotion control policy that is best suited to

their scale; the control parameters are described in their respective experimental sections. The gait

planner generates desired foot positions and velocities based on the current and desired velocity of

the base (see Figure 66).

Controller The control diagram for experimentation is illustrated in Figure 35. Unlike the “con-

troller” described in §5.2, the simulated robot is controlled by an error feedback control scheme,

and the in situ robot is controlled open-loop, by sending desired positions to the DYNAMIXEL

actuators.

Figure 35: Control system used by the robot in situ for validating the robot morphological improvement
process.

Quadrupedal Robot The following two validation sections use differently sized quadrupedal

robots with topological structures identical to the previous quadrupeds described in Chapter 4. All

are 18 degree-of-freedom (12 actuated) quadruped robots; link names referred to throughout this

82

chapter are labeled in Figure 36.

Figure 36: A virtual rendering of the simulated reconfigurable robot; its geometric, kinematic, and inertial
models closely match the physical robots in this section despite differences in appearance. The base link (grey)
has a box geometry; limbs, originating from the corners of the base have a cylindrical geometry; feet have a
spherical geometry. All links also have a density that, with the calculated volume, determine the mass of the
link. Densities were selected based on the building material used for the robot (e.g., the 3D printed robot has
a maximum link density of PVC and could be printed at lower densities by hollowing out the link). An RGBD
sensor on the “head” (unused) is rendered also.

6.2 Designing a 3D printed Robot

The interactive design approach is tested in this section by generating robot designs from both

“supervised” (human in-the-loop) and fully automated processes and then compare their relative

performance with respect to a simple locomotion task. Experiments with two fabricated robots are

described in this section; the robots were 3D printed using morphological and mass parameters

of the tuned model. The human-in-the-loop was permitted to perform only simple adjustments to

each automatically-generated model update (see §5.2.2).

A test of the robot design framework was first performed and then an experiment was run to as-

sess the validity of the simulation results against 3D printed robots. The evaluated task was focused

on locomoting in a straight-line across a planar environment, though the approach is not limited to

83

this scenario. The objective was to update the morphological parameters of a quadrupedal robot

to perform a trot at a variable forward velocity. This experiment sought to adjust the continuous

geometric and mass parameters of the links of the quadruped in order to achieve the highest speed

possible given known actuator stall torque and velocity limits. The model modification process

from Chapter 5 was used to iteratively update the robot model in order to increase its maximum

trotting speed. Trotting was the targeted task in this chapter because it is a highly dynamic, known

challenging task that requires a robot to make full use of its physical ability. After verification in

simulation, changes to the virtual robot model were manually applied to the physical robot; ob-

servations focused on whether the improvements made in simulation also resulted in better in situ

performance.

6.2.1 Experimental design To determine the usefulness of the proposed interactive design pro-

cess, three candidate robot models were compared: () an initial robot, taken without modi-

fication from previous, successful locomotion experiments (see Chapter 4); () an updated robot

design created by following an automated approach, seeded from the initial robot and al-

lowing the design software to iteratively update the model according to the path of steepest descent

until the model modification process could make no further progress; and () an updated robot de-

sign created by following a supervised approach, seeded from the initial robot using the

software to guide the designer through modifications using the direction of steepest descent. After

generating the three candidate models, the initial and supervised robot models were fabri-

cated for testing in situ. The automated model was not fabricated, as its design was not limited

to adhere to the 3D printer’s fabrication constraints; I comment on this model in Section 6.2.4.

Both fabricated robots were tested by comparing their average velocity over a duration of trotting

against the intended trotting speed. This metric was used to determine whether in situ performance

improved at each target gait velocity for the supervised robot over the initial robot. It was

expected that the supervised robot would be much more successful at performing the higher

speed gaits, as it was modified to respect its actuator limitations for those gaits.

The updated robot designs (automated and supervised) were seeded from a simple robot

84

model (initial). A CAD model of the initial morphology designed for a 3D printer is

depicted in Figure 43.

Figure 37: The initial robot design used to seed the updated models.

6.2.2 Morphological parameterization One simplification made for the scenario in this section

assumes that a locomoting robot will need to be symmetric across the sagittal plane. Because

any robots that are laterally asymmetric are likely to be rejected by a designer, only the model

parameters of half of the robot were adjusted, then those parameters were reflected to the other

side when the model was updated.

Relevant morphological parameter and actuator limitation for this scenario, a 3D-printed quad-

rupedal robot, are shown in Figure 38.

85

Update Morphology: 3D-printed, low-cost, quadruped

With morphological parameters p:

Morphological Parameter (unit) Links Affected
front, upper limb length, lFront,ULeg (cm) {LF, RF} {ULEG}
front, lower limb length, lFront,LLeg (cm) {LF, RF} {LLEG}
hind, upper limb length, lHind,ULeg (cm) {LH, RH} {ULEG}
hind, lower limb length, lHind,LLeg (cm) {LH, RH} {LLEG}

base length, lBase (cm) BASE
base width, wBase(cm) BASE
base height, hBase(cm) BASE

front foot radius, rFront,Foot (cm) {LF, RF} FOOT
hind foot radius, rHind,Foot (cm) {LH, RH} FOOT

front limb radius, rFront,Limb {LF, RF} {HIP, ULEG,LLEG}
hind limb radius, rHind,Limb {LH, RH} {HIP, ULEG,LLEG}

front, hip mass, mFront,Hip (cm) {LF, RF} {HIP}
front, upper limb mass, mFront,ULeg (cm) {LF, RF} {ULEG}
front, lower limb mass, mFront,LLeg (cm) {LF, RF} {LLEG, FOOT}

hind, hip mass, mHind,Hip (cm) {LH, RH} {HIP}
hind, upper limb mass, mHind,ULeg (cm) {LH, RH} {ULEG}
hind, lower limb mass, mHind,LLeg (cm) {LH, RH} {LLEG, FOOT}

Such that limitations are not exceeded

Parameter number of actuators Value
Actuator Torque Limits 12 1.1 N·m

Actuator Velocity Limits 12 6.55 rad/s

Figure 38: Parameters and limits for the 3D-printed, low-cost, quadruped scenario. Limits to robotic
hardware considered in the experiment are the stall torque and max velocity of a cheap hobby servo. A
plot of a linear torque-speed curve described by these values is drawn Figure 34.

6.2.3 Gait Parameterization Planning and control for the 3D printed robots were performed by

a Raspberry Pi computer looping over a prerecorded configuration space trajectory for the specific

robot morphology. The trotting gait trajectory was generated using the PACER planning and control

software (Zapolsky, 2015). Gait parameters are defined in Figure 6.

6.2.4 Robot performance in sim This section presents in sim results from the morphological

modification process. Both supervised and automated design processes began using the

initial model attempting to perform a trotting gait (see Table 6) at the starting forward velocity

86

Quadrupedal Gait Parameters
Parameter (unit) Value

forward velocity (cm/s) 50
base linear offset (cm) {0, 0, 0.75×min-leg-length∗}

base orientation offset (rad) {0, 0, 0}
step height (cm) 1

stance length (% base length) 200
stance width (% base width) 110

gait duration (sec) 0.3
liftoff timing (% gait duration) {25, 75, 25, 75}
duty factor (% gait duration) {60, 60, 60, 60}

Table 6: Gait parameters for the trotting task performed by the robot. (*)min-leg-length refers to the minimum value
of lFront,ULeg + lFront,LLeg and lHind,ULeg + lHind,LLeg between front and hind leg pairs.

Figure 39: The automated (left) and supervised (right) robot design progress over several virtual model
updates. Regions of the plot are colored according to the percentage of the gait that the robot model can
complete at the specified velocity before violating an actuator limit. Colors blue, white, and red coincide with 0,
50, and 100 percent task completion, respectively.

87

of 10 cm/s.

The result of the human in the loop modification process generated the morphology depicted

(as a CAD model) in Figure 40. The automated process generated the morphology designed

for a 3D printer depicted in Figure 41. The automated model yielded a robot characterized by

extreme values (e.g., 1 g front foot mass and 187 mm hind foot radius). Although fabrication of this

robot is possible, hard to quantify issues—such as self collision and thin, brittle link geometries—

likely would have resulted in the robot destroying itself during the first test. Section 6.2.5 will note

that the seemingly more robust initial model broke in the fifth trial during physically situated

testing.

Figure 39 shows that modifying the robot enough to progress past one limit violation was usually

enough to progress through the remainder of the planned gait, at least for a walking trot. This

phenomenon expresses itself in the plots as either 0% or 100% progress in the plot (blue or red,

respectively), and there are very few examples of 50% progress (white). Both designs achieved the

same maximum forward trotting velocity of 50 cm/s in simulation, leading to the conclusion that

the automated process resulted in a objectively equivalent, yet qualitatively inferior robot (as will

be demonstrated shortly §6.2.5).

6.2.5 Results in situ This section presents in situ results from the morphological modification

process for the 3D printed robot. Both supervised and automated design processes began

using the initial model attempting to perform a trotting gait at a starting forward velocity of 10

cm/s. The model needed to be improved to proceed to the next velocity (velocities were increased

in 10 cm/s increments)

The situated robot was controlled at a forward velocity of 16.26 cm/s, determined by the approx-

imately 60 Hz publish rate of the Raspberry Pi computer: attempting faster movement produced

jumpy behavior when the robot tried to follow the joint trajectory in real-time.

The initial robot trotted an average distance of 64 cm over 20 gait cycles, or about 12.22

seconds of trotting during the trials where it managed to complete the task. The robot successfully

88

Figure 40: The supervised modified robot design produced using the interactive design process.

Figure 41: The automatedmodified robot design produced using gradient descent and no human supervision.
This design has links that are too short to fit the designated actuators and link radii that are too wide to achieve
a reasonable range of motion.

89

Parameter initial automated supervised
lFront,Hip 62 137 54
lFront,ULeg 72 96 53
lFront,LLeg 140 189 55
lHind,Hip 62 1 54
lHind,ULeg 72 81 53
lHind,LLeg 140 106 55

lBase 87 165 72
wBase 64 72 64
hBase 20 34 25

rFront,{Hip,ULeg,LLeg} 23 92 23
rHind,{Hip,ULeg,LLeg} 23 37 23

rFront,Foot 20 8 27
rHind,Foot 20 187 39
mFront,Hip 17 148 12
mFront,ULeg 18 3 12

mFront,{LLeg,Foot} 29 1 15
mFront,Hip 17 200 12
mFront,ULeg 18 166 12

mHind,{LLeg,Foot} 29 69 15

Table 7: Model parametrization for each robot. Masses (m) are in grams and length (l), width (w), radius (r), and
height (h) are in mm.

completed the 20 gait cycles in only three of the five trials. The robot had trouble supporting its

own weight during most trials and then fell to its side in the fourth trial; after repeating this failure

in the fifth trial, the robot hardware was irreparably damaged—the servo horn-link interface was

stripped. The average velocity during the successful trials was 5.23 cm/s, or about one-third of the

commanded velocity. The robot shuffled its feet throughout the trials, indicating that it was unable

to produce the necessary torque to properly move its long limbs. This discrepancy was readily

detected by the morphological modification process, and the violation was then corrected via mod-

ifications to the robot parameters (yielding the supervised and unsupervised models).

90

(a) initial (b) modified

Figure 42: A time-lapse of the initial and modified robots trotting for 20 gait cycles.

The supervised robot trotted at an average distance of 99 cm over 20 gait cycles, or about

12.22 seconds of trotting. The average velocity during the trials was 8.04 cm/s, about one-half the

commanded velocity (and 54% faster than the initial robot). The discrepancy between actual

and desired trotting speeds were attributed to the robot’s feet tending to slide at the moment of

push-off during locomotion. The robot remained stable and successfully completed all trials.

6.3 Reconfigurable Quadruped

While Section 6.2 focused on making a newly created low-cost, robot functional, this section

presents a modified version of the LINKS robot, built with reconfigurable links (see Figure 43)

and attempts to discover the best shape for the adjustable robot. It was hypothesized that the peak

performance of the robot was limited by its short legs; the robot was rebuilt to adjust between a size

smaller than its original structure (see Figure 21a), to limb and body dimensions that were double

that of the original robot; original link dimensions are preserved for robot relative size comparison

in Figure 46.

Two model update processes were run, starting from two different initial morphological pa-

rameterizations of the robot in Figure 43: () a small robot, with the minimum-size morpholog-

ical parameter settings; and () a large robot, with the maximum-size morphological parameter

settings (see Table 9). The modified robot designs were modified from the parameterizations

91

for the initial robot models.

All four robot configurations were tested by comparing their average forward velocity while

performing a trotting gait across a two meter length of floor. This metric was used to determine

whether in situ performance improved at the target gait velocity of 30 cm/s for the modified

robot over the initial robot. It was expected that the modified robots would perform much

better at the trotting task, as they were modified to respect their actuator limitations for the pre-

scribed gait.

6.3.1 Platform The test platform was a quadrupedal robot built from Dynamixel actuators joined

by aluminum bars. The base of the robot was built from T-slotted aluminum framing bars.

Figure 43: The reconfigurable robot in its initial small configuration.

The robot has adjustable limb and body dimensions to permit setting the morphological parame-

ters; relevant morphological parameters and actuator limitations for this particular case are shown

in Figure 44.

92

Update Morphology: Reconfigurable quadruped

With morphological parameters p:

Parameter (unit) Links Affected
front, upper limb length, lFront,ULeg (cm) {LF, RF} {ULEG}
front, lower limb length, lFront,LLeg (cm) {LF, RF} {LLEG}
hind, upper limb length, lHind,ULeg (cm) {LH, RH} {ULEG}
hind, lower limb length, lHind,LLeg (cm) {LH, RH} {ULEG}

Base length, lBase (cm) BASE
Base width, wBase(cm) BASE

Such that limitations are not exceeded

Parameter number of actuators value
RX-24F Actuator Torque Limits 10 2.6 N·m

RX-24F Actuator Velocity Limits 10 13.195 rad/s
MX-64 Actuator Torque Limits 2 6.0 N·m

MX-64 Actuator Velocity Limits 2 6.597 rad/s

Figure 44: Parameters and limits for the reconfigurable quadruped scenario. Limits to robotic hard-
ware considered in the experiment are the stall torque and max velocity of the RX-24F and MX-64
Dynamixel actuators. The linear torque-speed curves described by these values are drawn in Figure 34.

6.3.2 Control policy: gait parameterization A locomotion control policy with gait parameters

shown in Table 8 was used both to control the quadruped and to generate task trajectories for

the model modification process. These values were chosen as a generally functional set of gait

parameters for a 16 cm tall quadruped.

6.3.3 Results in situ This section presents in situ results from the morphological modification

process for the reconfigurable robot. The modified design process began using the initial

virtual model attempting to perform a trotting gait (see Table 8) at a starting forward velocity of 10

cm/s. The models required adjustments to their kinematic model parameters in order to proceed to

the next target velocity (velocities were increased in 10 cm/s increments).

The parameters of each robot’s morphology are reported in Table 9 and visualized in Figure 46.

The robots in situ typically managed to locomote at about half the speed of their virtual counterparts

with the same control policy. Like the previous 3D-printed robot, much of this discrepancy in speed

93

Quadrupedal Gait Parameters
Parameter (unit) Value

forward velocity (cm/s) 30
base linear offset (cm) {0, 0, 15}

base orientation offset (rad) {0, 0, 0}
step height (cm) 2

stance length (cm) 30
stance width (cm) 20
gait duration (sec) 0.3

liftoff timing (% gait duration) {25, 75, 25, 75}
duty factor (% gait duration) {60, 60, 60, 60}

Table 8: Gait parameters for the walking task performed by the reconfigurable robot.

(a) small robot (b) large robot

Figure 45: The evolution of the trajectory with respect to the torque-speed limit witness function boundary
between the initial and modified robot designs when following a trotting gait at 30 cm/s. The initial
designs cross the witness function boundary, while the modified designs do not.

94

can be attributed to the robot’s feet tending to slide at the moment of push-off during locomotion

in situ. The initial large robot was unable to walk forward at all in situ. Excessive strain

on its joints caused that robot to sag and scuff its knees against the floor as it attempted to walk

forward; this led the robot to veer to the side of the testing track.

Robot
initial initial modified modified

Parameter small large small large
lFront,ULeg (cm) 5.715 13.335 7.3 11.8
lFront,LLeg (cm) 9.715 13.335 7.5 5.7
lHind,ULeg (cm) 5.715 13.335 8.6 8.0
lHind,LLeg (cm) 9.715 13.335 8.9 8.5

lBase (cm) 7.112 30.734 10.9 10.3
wBase (cm) 5.080 23.495 10.6 9.895

Performance
velocity, in sim (cm/s) < 10 < 10 40 40
velocity, in situ (cm/s) 14.7 – 17.7 9.8

Table 9: Model parametrization and performance of each configuration of the reconfigurable robot. Definitions of
these variables are provided in Figure 44

The modification process updated the parameters to decrease the stress on the actuators by re-

ducing sustained and maximum outputs; the plot in Figure 45 depicts how the morphological

adjustment process moved the parameters such that the torque-speed constraint was respected.

The average trotting speed of each robot before and after modification is reported in Table 9, and

images from physical tests are provided in in Figure 47.

The user controls the scaling of the direction of steepest descent by scaling factor α (see §5.2.2);

they can choose which parameters receive greater emphasis in each update to speed the modi-

fication process. Small adjustments to α helped steer model updates away from less desirable

morphologies. Having a human in the loop was a simple method of detecting when the config-

uration was approaching infeasible or undesirable parameters. Otherwise, the process required

very little input from the user. The initial small and large robots were updated 24 and

17 times, respectively, before reaching their modified states where no further progress could

be made (because the robot parameters had converged to a local performance optimum where no

95

(a) initial
small

(b) initial large (c) modified
small

(d) modified
large

Figure 46: The initial and modified robot designs resulting from a human-in-the-loop design process
with gradient descent directions suggested to the designer. To provide a sense of scale for the updated morpho-
logical designs, model kinematics were updated while visualization of the original robot links remained fixed.
Visualizing these disparately sized robots with the same geometries leads to large gaps or overlaps between
links, as seen here.

nearby configurations could achieve a faster trotting speed).

96

(a) initial small

(b) initial large

(c) modified small

(d) modified large

Figure 47: Pictures from in situ testing with each robot design. The images were captured after 10 seconds of
locomotion. The robots are moving from the left side of each image to the right; robots that are further right
walked faster than robots that are further left. Each tile is approximately 0.3 meters on a side.

6.4 Conclusion

This chapter presented demonstrations of a morphological modification process that significantly

improved the real-world performance of the tested robots. A substantial increase in maximum

locomotion speed was observed between initial and post-modification morphologies during virtual

97

and in situ trails for both robot prototyping scenarios. Design modifications made to the robots

in this chapter permitted low-cost robots that initially performed poorly or entirely broke-apart to

locomote successfully. The modified robots exhibited substantially more durable behavior than the

robots built with the initial designs.

Catastrophic failures such as limb dislocation and veering off the testing track were not observed

on the modified robots as they were with the initial robot designs; this supports the hypothesis

that the presented model modification approach can be used to combat various divergent behaviors

detected by the particle traces and control policy falsification procedures from Chapters 3 and 4.

This presented robot design tool could facilitate maximizing robot performance; it discovers what

factors limit a robot’s ability to perform a task or cause a robot to fail unexpectedly and then

mitigate the effects that those limitations have on the behavior of the robot in situ.

98

7 Inverse Dynamics with Contact

This dissertation focuses specifically on robots that physically interact with their environment

via contact (i.e., manipulation and locomotion). When contact is expected but does not occur or

when contact is not expected but does occur, robot behavior diverges from plan, often disastrously.

Chapters 3 and 4 presented and tested a method of detecting such behavioral divergence through

virtual stress-testing. Chapters 5 and 6 then presented and tested a method of mitigating the occur-

rence of these behavioral divergences through virtual robot model modification. In order to provide

predictions of divergent behavior and design modifications that are applicable to robots in situ, the

presented techniques are predicated on the accurate simulation of robotic systems and precise con-

trol strategies such as inverse dynamics which is used extensively in robotics and biomechanics

applications.

In manipulator and legged robots, inverse dynamics can form the basis of an effective nonlinear

control strategy by providing a robot with both accurate positional tracking and active compli-

ance. In biomechanics applications, inverse dynamics control can approximately determine the net

torques applied at anatomical joints that correspond to an observed motion. In the context of robot

control, inverse dynamics requires knowledge of all contact forces acting on the robot. Contact is a

governing factor for the movement of legged robots about their environments and for the manner in

which robot hands pick up, move, operate, and otherwise manipulate objects in their environment.

Measuring such forces is limited by the ability to instrument surfaces and filter force readings,

and such filtering effectively delays force sensing to a degree unacceptable for real-time opera-

tion. An alternative is to use contact force predictions, for which reasonable agreement between

models and reality have been observed (see, e.g., Aukes & Cutkosky 2013). Formulating such

approaches is technically challenging, however, because the actuator forces are generally coupled

to the contact forces, requiring simultaneous solution. Inverse dynamics approaches that simul-

taneously compute contact forces exist in literature. Although these approaches were developed

without incorporating all of the established modeling aspects (like complementarity) and address-

99

ing all of the technical challenges (like inconsistent configurations) of hard contact, these methods

have been demonstrated performing effectively on real robots. In contrast, this chapter focuses on

formulating inverse dynamics with these established modeling aspects—which allows forward and

inverse dynamics models to match—and addresses the technical challenges, including solvability.

Section 7.1 describes background in rigid body dynamics and rigid contact, as well as related

work in inverse dynamics with contact and friction. The implementation of three disparate inverse

dynamics formulations are then presented in Sections 7.3, 7.4, and 7.5. Each implementation was

aimed to: () successfully control a robot through its assigned task; () mitigate torque chatter from

indeterminacy; () evenly distribute contact forces between active contacts; () speed computation

so that the implementation can be run at realtime on standard hardware. Section 7.3 presents an in-

verse dynamics formulation with contact force prediction that utilizes the non-impacting rigid con-

tact model (to be described in Section 7.1.4) with no-slip frictional constraints. Section 7.4 presents

an inverse dynamics formulation with contact force prediction that utilizes the non-impacting rigid

contact model with Coulomb friction constraints. The problem of mitigating torque chatter from

indeterminate contact configurations is shown to be no harder than NP-hard. Section 7.5 presents

an inverse dynamics formulation that uses a rigid impact model and permits the contact force

prediction problem to be convex. This convexity will allow us to mitigate torque chatter from

indeterminacy.

Section 7.6 describes experimental setups for assessing the inverse dynamics formulations in

the context of simulated robot control along multiple dimensions: accuracy of trajectory tracking;

contact force prediction accuracy; general locomotion stability; and computational speed. Tests

are performed on terrains with varied friction and compliance. Presented controllers are compared

against both PID control and inverse dynamics control with sensed contact and perfectly accurate

virtual sensors. Assessment under both rigid and compliant contact models permits both exact

and in-the-limit verification that controllers implementing these inverse dynamics approaches for

control work as expected. These experiments also examine behavior when modeling assumptions

break down. Section 7.7 analyzes the findings from these experiments. Appendix E presents a

100

chart overviewing the advantages and disadvantages of the presented inverse dynamics algorithms

to guide a roboticist toward selecting the best algorithm for their application

7.0.1 Invertibility of the rigid contact model An obstacle to such a formulation has been the

claim that the rigid contact model is not invertible (Todorov, 2014), implying that inverse dynamics

is unsolveable for multi-rigid bodies subject to rigid contact. If forces on the multi-body other than

contact forces at state { q, q̇ } are designated x and contact forces are designated y, then the rigid

contact model (to be described in detail in Section 7.1.4) yields the relationship y = fq,q̇(x).

It is then true that there exists no left inverse g(.) of f that provides the mapping x = gq,q̇(y)

for y = fq,q̇(x). However, this chapter will show that there does exist a right inverse h(.) of f

such that, for hq,q̇(y) = x, fq,q̇(x) = y, and Section 7.4 shows that this mapping is computable

in expected polynomial time. This chapter will use this mapping to formulate inverse dynamics

approaches for rigid contact with both no-slip constraints and frictional surface properties.

7.0.2 Indeterminacy in the rigid contact model The rigid contact model is also known to be sus-

ceptible to the problem of contact indeterminacy, the presence of multiple equally valid solutions to

the contact force-acceleration mapping. This indeterminacy is the factor that prevents strict invert-

ibility and which, when used for contact force predictions in the context of inverse dynamics, can

result in torque chatter that is potentially destructive for physically situated robots. Section 7.4.3

shows that computing a mapping from accelerations to contact forces that evolves without harmful

torque chatter is no worse than NP-hard in the number of contacts modeled for Coulomb friction

and can be calculated in polynomial time for the case of infinite (no-slip) friction.

This chapter also describes a computationally tractable approach for mitigating torque chatter

that is based upon a rigid contact model without complementarity conditions (see Sections 7.1.4

and 7.1.4). The model appears to produce reasonable predictions: Anitescu (2006); Drumwright

& Shell (2010); Todorov (2014) have all used the model within simulation and physical artifacts

have yet to become apparent.

This chapter will assess these inverse dynamics algorithms in the context of controlling a virtual

101

locomoting robot and a fixed-base manipulator robot. For points of comparison the performance

of error feedback and inverse dynamics controllers with virtual contact force sensors are examined

with respect to the implemented controllers. A rating of the “performance” of each controller will

consider smoothness of torque commands, trajectory tracking accuracy, locomotion performance,

and computation time.

7.0.3 Contributions This chapter provides the following contributions:

• Proof that the coupled problem of computing inverse dynamics-derived torques and contact

forces under the rigid body dynamics, non-impacting rigid contact, and Coulomb friction

models (with linearized friction cone) is solvable in expected polynomial time.

• An algorithm that computes inverse dynamics-derived torques without torque chatter under

the rigid body dynamics model and the rigid contact model assuming no slip along the

surfaces of contact, in expected polynomial time.

• An algorithm that yields inverse dynamics-derived torques without torque chatter under the

rigid body dynamics model and the rigid, non-impacting contact model with Coulomb fric-

tion in exponential time in the number of points of contact, and hence a proof that this

problem is no harder than NP-hard.

• An algorithm that computes inverse dynamics-derived torques without torque chatter under

the rigid body dynamics model and a rigid contact model with Coulomb friction but does

not enforce complementarity conditions (again, see Sections 7.1.4 and 7.1.4), in expected

polynomial time.

These algorithms differ in their operating assumptions. For example, the algorithms that en-

force normal complementarity (to be described in Section 7.1.4) assume that all contacts are non-

impacting; similarly, the algorithms that do not enforce complementarity assume that bodies are

impacting at one or more points of contact. As will be explained in Section 7.2, control loop

period endpoint times do not necessarily coincide with contact event times, so a single algorithm

102

must deal with both impacting and non-impacting contacts. It is an open problem of the effects

of enforcing complementarity when it should not be enforced, or vice versa. The algorithms also

possess various computational strengths. As results of these open problems and varying computa-

tional strengths, I will present multiple algorithms to the reader as well as a guide (see Appendix E)

that details task use cases for these controllers.

7.1 Background and related work

This section surveys the independent parts that are combined to formulate algorithms for cal-

culating inverse dynamics torques with simultaneous contact force computation. Section 7.1.1

discusses complementarity problems, a domain outside the purview of typical roboticists. Sec-

tion 2.5 introduces the rigid body dynamics model for Newtonian mechanics under generalized

coordinates. Section 7.1.4 covers the rigid contact model, and unilaterally constrained contact.

Sections 7.1.4 –7.1.4 show how to formulate constraints on the rigid contact model to account

for Coulomb friction and no-slip constraints. Section 7.1.4 describe an algebraic impact model

that will form the basis of one of the inverse dynamics methods. Section 7.1.5 describes the phe-

nomenon of “indeterminacy” in the rigid contact model. Lastly, Sections 7.1.6 and 7.1.7 discusses

other work relevant to inverse dynamics with simultaneous contact force computation.

7.1.1 Complementarity problems Complementarity problems are a particular class of mathe-

matical programming problems often used to model hard and rigid contacts. A nonlinear comple-

mentarity problem (NCP) is composed of three nonlinear constraints (Cottle et al., 1992), which

taken together constitute a complementarity condition:

x ≥ 0 (26)

f(x) ≥ 0 (27)

xTf(x) = 0 (28)

103

where x ∈ Rn and f : Rn → Rn. Henceforth, the following shorthand will be used to denote a

complementarity constraint:

0 ≤ a ⊥ b ≥ 0 (29)

which signifies that a ≥ 0, b ≥ 0, and a · b = 0.

A LCP, or linear complementarity problem (r,Q), where r ∈ Rn and Q ∈ Rn×n, is the linear

version of this problem:

w = Qz + r

w ≥ 0

z ≥ 0

zTw = 0

for unknowns z ∈ Rn,w ∈ Rn.

Theory of LCPs has been established to a greater extent than for NCPs. For example, theory

has indicated certain classes of LCPs that are solvable, which includes both determining when a

solution does not exist and computing a solution, based on properties of the matrix Q (above).

Such classes include positive definite matrices, positive semi-definite matrices, P -matrices, and

Z-matrices, to name only a few; (Murty, 1988; Cottle et al., 1992) contain far more information

on complementarity problems, including algorithms for solving them. Given that the knowledge

of NCPs (including algorithms for solving them) is still relatively thin, this chapter will relax NCP

instances that correspond to contacting bodies to LCPs using a common practice, linearizing the

friction cone.

Duality theory in optimization establishes a correspondence between LCPs and quadratic pro-

grams (see Cottle et al., 1992, Pages 4 and 5) via the Karush-Kuhn-Tucker conditions; for exam-

ple, positive semi-definite LCPs are equivalent to convex QPs. Algorithms for quadratic programs

(QPs) can be used to solve LCPs, and vice versa.

104

7.1.2 Relationship between LCPs and MLCPs This section describes the mixed linear compli-

mentarity problem (MLCP) and its relationship to the “pure” LCP.

Assume the LCP (r,Q) for r ∈ Ra and Q ∈ Ra×a:

w = Qz + r w ≥ 0 z ≥ 0 zTw = 0 (30)

for unknown vectors z,w ∈ Ra. A mixed linear complementarity problem (MLCP) is defined by

the matrices A ∈ Rp×s, C ∈ Rp×t, D ∈ Rr×s, B ∈ Rr×t, x ∈ Rs, y ∈ Rt, g ∈ Rp, and h ∈ Rr

(where p = s and r = t) and is subject to the following constraints:

Ax+ Cz + g = 0 (31)

Dx+ Bz + h ≥ 0 (32)

z ≥ 0 (33)

zT(Dx+ Bz + h) = 0 (34)

The x variables are unconstrained, while the z variables must be non-negative. If A is non-

singular, the unconstrained variables can be computed as:

x = −A−1(Cz + g) (35)

Substituting x into Equations 31–153 yields the pure LCP (r,Q):

Q ≡ B−DA−1C (36)

r ≡ h−DA−1g (37)

A solution (z,w) to this LCP obeys the relationship Qz + r = w; given z, x is determined via

Equation 35, solving the MCLP.

105

7.1.3 The multi-body This chapter centers around a multi-body, which is the system of rigid

bodies (see §2.5) to which inverse dynamics is applied. The multi-body may come into contact

with “fixed” parts of the environment (e.g., solid ground) which are sufficiently modeled as non-

moving bodies— this is often the case when simulating locomotion. Alternatively, the multi-body

may contact other bodies, in which case effective inverse dynamics will require knowledge of those

bodies’ kinematic and dynamic properties — necessary for manipulation tasks.

The articulated body approach can be extended to a multi-body to account for physically in-

teracting with movable rigid bodies by appending the six degree-of-freedom velocities (vcb) and

external wrenches (fcb) of each contacted rigid body to the velocity and external force vectors and

by augmenting the generalized inertia matrix (M) similarly:

v =

[
vrobot

T +
vcb

T

]T
(38)

fext =

[
frobot

T fcb
T

]T
(39)

M =

Mrobot 0

0 Mcb

 (40)

Without loss of generality, this chapter will hereafter consider only a single multi-body in con-

tact with a static environment (excepting an example with a manipulator arm grasping a box in

Section 7.6).

7.1.4 Rigid contact model This section will summarize existing theory of modeling non-

impacting rigid contact and draws from Stewart & Trinkle (1996); Trinkle et al. (1997); Anitescu

& Potra (1997). Let us define a set of gap functions φi(x) (for i = 1, . . . , q), where gap func-

tion i gives the signed distance between a link of the robot and another rigid body (part of the

environment, another link of the robot, an object to be manipulated, etc.)

The notation in this chapter assumes independent coordinates x (and velocities v and accelera-

tions v̇), and that generalized forces and inertias are also given in minimal coordinates.

106

Figure 48: The contact frame consisting of n̂, ŝ, and , t̂ vectors corresponding to the normal, first tangential,
and second tangential directions (for 3D) to the contact surface.

The gap functions return a positive real value if the bodies are separated, a negative real value

if the bodies are geometrically intersecting, and zero if the bodies are in a “kissing” configuration.

The rigid contact model specifies that bodies never overlap, i.e.:

φi(x) ≥ 0 for i = 1, . . . , q (41)

One or more points of contact between bodies is determined for two bodies in a kissing configura-

tion (φi(x) = 0). For clarity of presentation, it was assumes that each gap function corresponds

to exactly one point of contact (even for disjoint bodies), so that n = q. In the absence of fric-

tion, the constraints on the gap functions are enforced by forces that act along the contact normal.

Projecting these forces along the contact normal yields scalars fN1 , . . . , fNn . The forces should be

compressive (i.e., forces that can not pull bodies together), which is denoted by restricting the sign

of these scalars to be non-negative:

fNi
≥ 0 for i = 1, . . . , n (42)

A complementarity constraint keeps frictional contacts from doing work: when the constraint is

inactive (φi > 0) no force is applied and when force is applied, the constraint must be active (φi =

0). This constraint is expressed mathematically as φi · fNi
= 0. All three constraints can be

107

combined into one equation using the notation in Section 7.1.1:

0 ≤ fNi
⊥ φi(x) ≥ 0 for i = 1, . . . , n (43)

These constraints can be differentiated with respect to time to yield velocity-level or acceleration-

level constraints suitable for expressing the differential algebraic equations (DAEs), as an index 1

DAE:

0 ≤ fNi
⊥ φ̇i(x) ≥ 0 if φi = 0 for i = 1, . . . , n (44)

0 ≤ fNi
⊥ φ̈i(x) ≥ 0 if φi = φ̇i = 0 for i = 1, . . . , n (45)

Modeling Coulomb friction Dry friction is often simulated using the Coulomb model, a relatively

simple, empirically derived model that yields the approximate outcome of sophisticated physical

interactions. Coulomb friction covers two regimes: sticking/rolling friction (where the tangent

velocity at a point of contact is zero) and sliding friction (nonzero tangent velocity at a point of

contact). Rolling friction is distinguished from sticking friction by whether the bodies are moving

relative to one another other than at the point of contact.

There are many phenomena Coulomb friction does not model, including “drilling friction” (it is

straightforward to augment computational models of Coulomb friction to incorporate this feature,

as seen in Leine & Glocker, 2003), the Stribeck effect (Stribeck, 1902), and viscous friction, among

others. This chapter focuses only on Coulomb friction, because it captures important stick/slip

transitions and uses only a single parameter; the LuGRe model (Do et al., 2007), for example, is

governed by seven parameters, making system identification tedious.

Coulomb friction uses a unitless friction coefficient, commonly denoted µ. If the tangent veloc-

ities and accelerations are defined in 3D frames (located at the ith point of contact) as vSi
/vTi and

aSi
/aTi , respectively, and the tangent forces as fSi

and fTi , then the sticking/rolling constraints

which are applicable exactly when 0 = vSi
= vTi , can be expressed via the Fritz-John optimality

108

conditions (Mangasarian & Fromovitz, 1967; Trinkle et al., 1997):

0 ≤ µ2
i f

2
Ni
− f 2

Si
− f 2

Ti
⊥ a2

Si
+ a2

Ti
≥ 0 (46)

µifNi
aSi

+ fSi

√
a2
Si

+ a2
Ti

= 0 (47)

µifNi
aTi + fTi

√
a2
Si

+ a2
Ti

= 0 (48)

These conditions ensure that the friction force lies within the friction cone (Equation 46) and that

the friction forces push against the tangential acceleration (Equations 47–48).

In the case of sliding at the ith contact (vSi
6= 0 or vTi 6= 0), the constraints become:

µ2
i fNi
− f 2

Si
− f 2

Ti
≥0 (49)

µifNi
vSi

+ fSi

√
v2
Si

+ v2
Ti

= 0 (50)

µifNi
vTi + fTi

√
v2
Si

+ v2
Ti

= 0 (51)

Note that this case is only applicable if v2
Si

+ v2
Ti
> 0, so there is no need to include such a con-

straint in Equation 49 (as was necessary in Equation 46).

The rigid contact model with Coulomb friction is subject to inconsistent configurations (Stew-

art, 2000a), exemplified by Painlevé’s Paradox (Painlevé, 1895), in which impulsive forces may

be necessary to satisfy all constraints of the model even when the bodies are not impacting. The

acceleration-level dynamics can be approximated using finite differences; a first order approxima-

tion is often used (see, e.g., Posa & Tedrake, 2012), which moves the problem to the velocity/im-

pulsive force domain. Such an approach generally uses an algebraic collision law (see Chatterjee

& Ruina, 1998) to model all contacts, both impacting, as inelastic impacts; typical “time stepping

methods” (Moreau, 1983) for simulating dynamics often treat the generalized coordinates as con-

stant over the small timespan of contact/impact (i.e., a first order approximation); see, e.g., Stewart

& Trinkle (2000). Stewart has shown that this approximation converges to the solution of the

continuous time formulation as the step size tends to zero (1998).

109

Upon moving to the velocity/impulsive force domain, Equations 46–51 require a slight transfor-

mation to the equations:

0 ≤ µ2
i f

2
Ni
− f 2

Si
− f 2

Ti
⊥ v2

Si
+ v2

Ti
≥ 0 (52)

µfNi
vSi

+ fSi

√
v2
Si

+ v2
Ti

= 0 (53)

µfNi
vTi + fTi

√
v2
Si

+ v2
Ti

= 0 (54)

and there is no longer separate consideration of sticking/rolling and slipping contacts.

No-slip constraints If the Coulomb friction constraints are replaced by no-slip constraints, which

is a popular assumption in legged locomotion research, one must also use the discretization ap-

proach; without permitting impulsive forces, slip can occur even with infinite friction (Lynch &

Mason, 1995). The no-slip constraints are then simply vSi
= vTi = 0 (replacing Equations 52–54).

Model for rigid, non-impacting contact with Coulomb friction The model of rigid contact

with Coulomb friction for two bodies in non-impacting rigid contact at p can be summarized by

the following equations:

0 ≤ fn ⊥ an ≥ 0 (55)

0 ≤ µ2f 2
n − f 2

s − f 2
t ⊥

√
v2
s + v2

t ≥ 0 (56)

0 = µfnvs + fs

√
v2
s + v2

t (57)

0 = µfnvt + ft

√
v2
s + v2

t (58)

0 = µfnas + fs

√
a2
s + a2

t (59)

0 = µfnat + ft

√
a2
s + a2

t (60)

where fn, fs, and ft are the signed magnitudes of the contact force applied along the normal and

two tangent directions, respectively; an is the relative acceleration of the bodies normal to the

contact surface; and vs and vt are the relative velocities of the bodies projected along the two

tangent directions. The operator ⊥ indicates that a · b = 0, for vectors a and b. Detailed

110

interpretation of these equations can be found in Trinkle et al. (1997); a summary is presented

below. Equation 55 ensures that () only compressive forces are applied (fn ≥ 0); () bodies

cannot interpenetrate (an ≥ 0); and () no work is done for frictionless contacts (fn · an = 0).

Equation 56 models Coulomb friction: either the velocity in the contact tangent plane is zero—

which allows frictional forces to lie within the friction cone—or the contact is slipping and the

frictional forces must lie strictly on the edge of the friction cone. Equations 57 and 58—applicable

to sliding contacts (i.e., those for which vs 6= 0 or vt 6= 0)—constrain friction forces to act against

the direction of slip, while Equations 59 and 60 constrain frictional forces for rolling or sticking

contacts (i.e., those for which vs = vt = 0) to act against the direction of tangential acceleration.

These equations form a nonlinear complementarity problem (Cottle et al., 1992), and this prob-

lem may not possess a solution with nonimpulsive forces due to the existence of inconsistent

configurations like Painlevé’s Paradox (Stewart, 2000b). This issue led to the movement to the im-

pulsive force/velocity domain for modeling rigid contact, which can provably model the dynamics

of such inconsistent configurations.

A separate issue with the rigid contact model is that of indeterminacy, where multiple sets of con-

tact forces and possibly multiple sets of accelerations—or velocities, if an impulse-velocity model

is used—can satisfy the contact model equations. The inverse dynamics approaches presented in

this chapter, which use rigid contact models, address inconsistency and, given some additional

computation, can address indeterminacy (useful for controlled systems).

Contacts without complementarity Complementarity along the surface normal arises from

Equation 43 for contacting rigid bodies that are not impacting. For impacting bodies, comple-

mentarity conditions are unrealistic (Chatterjee, 1999). Though the distinction between impacting

and non-impacting may be clear in free body diagrams and symbolic mathematics, the distinction

between the two modes is arbitrary in floating point arithmetic. This arbitrary distinction has led

researchers in dynamic simulation, for example, to use one model—either with complementarity

or without—for both impacting and non-impacting contact.

111

Anitescu (2006) described a contact model without complementarity (Equation 43) used for

multi-rigid body simulation. Drumwright & Shell (2010) and Todorov (2014) rediscovered this

model (albeit with slight modifications, addition of viscous friction, and guarantees of solution

existence and non-negativity energy dissipation in the former); Drumwright & Shell (2010) also

motivated acceptability of removing the complementarity condition based on the work by Chat-

terjee (1999). When treated as a simultaneous impact model, the model is consistent with first

principles. Additionally, using arguments in Smith et al. (2012), it can be shown that solutions

of this model exhibit symmetry. This impact model, under the assumption of inelastic impact—it

is possible to model partially or fully elastic impact as well, but one must then consider numer-

ous models of restitution, see, e.g., Chatterjee & Ruina (1998)—will form the basis of the inverse

dynamics approach described in Section 7.5.

The model is formulated as the convex quadratic program below. For consistency of presentation

with the non-impacting rigid model described in the previous section, only a single impact point is

considered.
Complementarity-free impact model (single point of contact)

dissipate kinetic energy maximally:

minimize
+v,fn,fs,ft

1

2

+

v
T
M

+

v (61)

non−interpenetration:

subject to: n
+

v ≥ 0 (62)

compressive normal forces

fn ≥ 0 (63)

Coulomb friction:

µ2fn ≥ fs + ft (64)

first−order dynamics:

+

v =
−
v + M−1(nTfn + sTfs + tTft)

(65)

where fn, fs, and ft are the signed magnitudes of the impulsive forces applied along the normal

and two tangent directions, respectively; −v ∈ Rm and +
v ∈ Rm are the generalized velocities of

112

the multi-body immediately before and after impact, respectively; M ∈ Rm×m is the generalized

inertia matrix of the m degree of freedom multi-body; and n ∈ Rm, s ∈ Rm, and t ∈ Rm

are generalized wrenches applied along the normal and two tangential directions at the point of

contact (see Appendix A for further details on these matrices).

The physical interpretation of the impact model is straightforward: it selects impact forces that

maximize the rate of kinetic energy dissipation. Finally, it should be noted that rigid impact models

do not enjoy the same degree of community consensus as the non-impacting rigid contact models

because three types of impact models (algebraic, incremental, and full deformation) currently ex-

ist (Chatterjee & Ruina, 1998), because simultaneous impacts and impacts between multi-bodies

can be highly sensitive to initial conditions (Ivanov, 1995), and because intuitive physical param-

eters for capturing all points of the feasible impulse space do not yet exist (Chatterjee & Ruina,

1998), among other issues. These difficulties lead this chapter to consider only inelastic impacts, a

case for which the feasible impulse space is constrained.

7.1.5 Contact force indeterminacy In previous work (Zapolsky et al., 2013), we discovered that

indeterminacy in the rigid contact model can be a significant problem for controlling quadrupedal

robots (and, presumably, hexapods, etc.) by yielding torques that switch rapidly between various

actuators (torque chatter). The problem can occur in bipedal walkers; for example, Collins et al.

(2001) observed instability from rigid contact indeterminacy in passive walkers. Even manipu-

lators may also experience the phenomenon of rigid contact indeterminacy, indicated by torque

chatter.

Rigid contact configurations can be indeterminate in terms of forces; for the example of a table

with all four legs perfectly touching a ground plane, infinite enumerations of force configurations

satisfy the contact model (as discussed in Mirtich, 1996), although the accelerations predicted by

the model are unique. Other rigid contact configurations can be indeterminate in terms of pre-

dicting different accelerations/velocities through multiple sets of valid force configurations. Two

methods of mitigating indeterminacy are presented in this chapter (see Sections 7.3.6 and 7.5.2).

Defining a manner by which actuator torques evolve over time, or selecting a preferred distribution

113

of contact forces may remedy the issues resulting from indeterminacy.

7.1.6 Contact models for inverse dynamics in the context of robot control This section focuses

on “hard”, as in perfectly rigid, models of contact incorporated into inverse dynamics and whole

body control for robotics. Research that has attempted to combine inverse dynamics with compli-

ant contact was not discovered over the course of developing this research (one possible reason for

absence of such work is that such compliant models can require significant parameter tuning for

accuracy and to prevent prediction of large contact forces).

Mistry et al. (2010) developed a fast inverse dynamics control framework for legged robots in

contact with rigid environments under the assumptions that feet do not slip. Righetti et al. (2013)

extended this work with a framework that permits quickly optimizing a mixed linear/quadratic

function of motor torques and contact forces using fast linear algebra techniques. Hutter & Sieg-

wart (2012) also uses this formulation in an operational space control scheme, simplifying the

contact mathematics by assuming contacts are sticking. Mistry et al.; Righetti et al.; Hutter &

Siegwart demonstrate effective trajectory tracking performance on quadrupedal robots.

The inverse dynamics approach of Ames (2013) assumes sticking impact upon contact with

the ground and immediate switching of support to the new contact, while enforcing a unilateral

constraint of the normal forces and predicting no-slip frictional forces.

Kuindersma et al. (2014) use a no-slip constraint but allow for bounded violation of that con-

straint in order to avoid optimizing over an infeasible or inconsistent trajectory.

Stephens & Atkeson (2010a) incorporate a contact model into an inverse dynamics formulation

for dynamic balance force control. Their approach uses a quadratic program (QP) to estimate con-

tact forces quickly on a simplified model of a bipedal robot’s dynamics. Newer work by Feng et al.

(2013) builds on this by approximating the friction cone with a circumscribed friction pyramid.

Ott et al. (2011) also use an optimization approach for balance, modeling contact to distribute

forces among a set of pre-defined contacts to enact a generalized wrench on a simplified model

of a biped; their controller seeks to minimize the Euclidian norm of the predicted contact forces

114

to mitigate slip. In underconstrained cases (where multiple solutions to the inverse dynamics with

contact system exist), Saab et al. (2013) and Zapolsky et al. (2013) use a multi-phase QP formu-

lation for bipeds and quadrupeds, respectively. Zapolsky et al. mitigates the indeterminacy in the

rigid contact model by selecting a solution that minimizes total actuator torques, while Saab et al.

use the rigid contact model in the context of cascades of QPs to perform several tasks in paral-

lel (i.e., whole body control). The latter work primarily considers contacts without slip, but does

describe modifications that would incorporate Coulomb friction (inconsistent and indeterminate

rigid contact configurations are not addressed). Todorov (2014) uses the same contact model (to

be described below) but without using a two-stage solution; that approach uses regularization to

make the optimization problem strictly convex (yielding a single, globally optimal solution). None

of Saab et al.; Zapolsky et al.; Todorov utilize the complementarity constraint (i.e., fN ⊥ φ in

Equation 43) in their formulation. Zapolsky et al. and Todorov motivate dropping this constraint

in favor of maximizing energy dissipation through contact, an assumption that they show performs

reasonably in practice (Drumwright & Shell, 2010; Todorov, 2011).

7.1.7 Contact models for inverse dynamics in the context of biomechanics Inverse dynamics is

commonly applied in biomechanics to determine approximate net torques at anatomical joints for

observed motion capture and force plate data. Standard Newton-Euler inverse dynamics algorithms

(as described in Featherstone, 2008) are applied; least squares is required because the problem is

overconstrained. Numerous such approaches are found in biomechanics literature, including (Kuo,

1998; Hatze, 2002; Blajer et al., 2007; Bisseling & Hof, 2006; Yang et al., 2007; Van Den Bogert

& Su, 2008; Sawers & Hahn, 2010). These force plate based approaches necessarily limit the

environments in which the inverse dynamics computation can be conducted.

7.2 Discretized inverse dynamics

Inverse dynamics is discretized in this work because the resolution to rigid contact models both

without slip and with Coulomb friction can require impulsive forces even when there are no im-

pacts (see Section 7.1.4). This choice will imply that the dynamics are accurate to only first order,

115

but that approximation should limit modeling error considerably for typical control loop rates (Za-

polsky & Drumwright, 2015).

As noted above, dynamics are discretized using a first order approximation to acceleration. Thus,

the solution to the equation of motion v̇ = M−1f over [t0, tf] is approximated by +
v =

−
v +

∆t
−
M−1−f , where ∆t = (tf − t0). The superscript “+” is used to denote that a term is evaluated

at tf and the superscript “−” is applied to denote that a term is computed at t0. As examples, the

generalized inertia matrix −
M is computed at t0 and the generalized post-contact velocity (+

v) is

computed at tf . Hereafter the convention will be adopted that application of a superscript once

will indicate implicit evaluation of that quantity at that time thereafter (unless another superscript

is applied). For example, matrix M will continue to be treated as evaluated at t0 in the remainder

of this chapter.

The remainder of this section describes how contact constraints should be determined for dis-

cretized inverse dynamics.

7.2.1 Incorporating contact into planned motion The inverse dynamics controller attempts to

realize a planned motion. That planned motion must account for pose data and geometric models

of objects in the robot’s environment. If planned motion is inconsistent with contact constraints,

e.g., the robot attempts to push through a wall, undesirable behavior will clearly result. Obtaining

accurate geometric data (at least for novel objects) and pose data are presently challenging prob-

lems; additional work in inverse dynamics control with predictive contact is necessary to address

contact compliance and sensing uncertainty.

7.2.2 Incorporating contact constraints that do not coincide with control loop period endpoint

times Contact events—making or breaking contact, transitioning from sticking to sliding or vice

versa—do not generally coincide with control loop period endpoint times. Introducing a contact

constraint “early”, i.e., before the robot comes into contact with an object, will result in a poor

estimate of the load on the robot (as the anticipated link-object reaction force will be absent).

Introducing a contact constraint “late”, i.e., after the robot has already contacted the object, implies

116

that an impact occurred; it is also likely that actuators attached to the contacted link and on up the

kinematic chain are heavily loaded, resulting in possible damage to the robot, the environment, or

both. Figure 49 depicts both of these scenarios for a walking bipedal robot.

Figure 49: If the contact constraint is introduced early (left figure, constraint depicted using dotted line) the
anticipated load will be wrong. The biped will pitch forward, possibly falling over in this scenario. If the contact
constraint is introduced late, an impact may occur while the actuators are loaded. The biped on the right is
moving its right lower leg toward a foot placement; the impact as the foot touches down is prone to damaging
the loaded powertrain.

This problem is addressed by borrowing a constraint stabilization (Ascher et al., 1995) approach

from Anitescu & Hart (2004), which is itself a form of Baumgarte Stabilization (Baumgarte, 1972).

Recalling that two bodies are separated by signed distance φ(.), constraints on velocities are deter-

mined such that .

To realize these constraints mathematically, Equation 44 is first converted to a discretized form:

0 ≤ fNi
(t) ⊥ φ̇i(x(t+ ∆t)) ≥ 0 if φi(t) = 0 for i = 1, . . . , n (66)

This equation specifies that a force is to be found such that applying the force between one of the

robot’s links and an object, already in contact at t, over the interval [t, t + ∆t] yields a relative

117

velocity indicating sustained contact or separation at t+ ∆t. Next the signed distance between the

bodies is incorporated:

0 ≤ fNi
(t) ⊥ φ̇i(x(t+ ∆t)) ≥ −φ(x(t))

∆t
for i = 1, . . . , n (67)

The removal of the conditional makes the constraint always active. Introducing a constraint of this

form means that forces may be applied in some scenarios when they should not be (see Figure 50

for an example). Alternatively, constraints introduced before bodies contact can be contradictory,

making the problem infeasible. Existing proofs for time stepping simulation approaches indicate

that such issues disappear for sufficiently small integration steps (or, in the context of inverse

dynamics, sufficiently high frequency control loops); see Anitescu & Hart (2004), which proves

that such errors are uniformly bounded in terms of the size of the time step and the current value

of the velocity.

118

Figure 50: An example of a contact constraint determined at time t0 (the time of the depicted configuration)
that could predict overly constrained motion at t0 +∆t (the next control loop trigger time) between two disjoint
bodies: the right foot and the skateboard. The contact constraint precludes predictions that the foot could move
below the dotted line. If the contact force prediction is computed using the current depiction (at t0) and the
skateboard moves quickly to the right such that no contact would occur between the foot and the skateboard
at t0 + ∆t, the correct, contact force (zero) will not be predicted. It should be apparent that these problems
disappear as ∆t→ 0, i.e., as the control loop frequency becomes sufficiently high.

7.2.3 Computing points of contact between geometries Given object poses data and geometric

models, points of contact between robot links and environment objects can be computed using

closest features. The particular algorithm used for computing closest features is dependent upon

both the representation (e.g., implicit surface, polyhedron, constructive solid geometry) and the

shape (e.g., sphere, cylinder, box). Algorithms and code can be found in sources like Ericson

(2005) and http://geometrictools.com. Figure 51 depicts the procedure for determining

contact points and normals for two examples: a sphere vs. a half-space and for a sphere vs. a

sphere.

For disjoint bodies like those depicted in Figure 51, the contact point can be placed anywhere

119

http://geometrictools.com

along the line segment connecting the closest features on the two bodies. Although the illustration

depicts the contact point as placed at the midpoint of this line segment, this selection is arbitrary.

Whether the contact point is located on the first body, on the second body, or midway between the

two bodies, no formula is “correct” while the bodies are separated and every formula yields the

same result when the bodies are touching.

Figure 51: A robot’s actuators are liable to be loaded while an impact occurs if contact constraints are in-
troduced late (after the bodies have already contacted), as described in Figure 49; contact constraints may be
introduced early (on the control loop before bodies contact) when the bodies are disjoint. This figure depicts
the process of selecting points of contact and surface normals for such disjoint bodies with spherical/half-space
(left) and spherical/spherical geometries (right). Closest points on the objects are connected by dotted line
segments. Surface normals are depicted with an arrow. Contact points are drawn as white circles with black
outlines.

7.3 Inverse dynamics with no-slip constraints

Some contexts where inverse dynamics may be used (biomechanics, legged locomotion) may

assume absence of slip (see, e.g., Righetti, et al., 2011; Zhao, et al., 2014). This section describes

an inverse dynamics approach that computes reaction forces from contact using the non-impacting

rigid contact model with no-slip constraints. Using no-slip constraints results in a symmetric, pos-

itive semidefinite LCP. Such problems are equivalent to convex QPs by duality theory in optimiza-

tion (see Cottle et al., 1992), which implies polynomial time solvability. Convexity also permits

120

mitigating indeterminate contact configurations, as will be seen in Section 7.3.6. This formulation

inverts the rigid contact problem in a practical sense and is derived from first principles.

Two algorithms are presented in this section: Algorithm 3 ensures the no-slip constraints on the

contact model are non-singular and thus guarantees that the inverse dynamics problem with contact

is invertible; Algorithm 4 presents a method of mitigating torque chatter from indeterminate con-

tact (for contexts of inverse dynamics based control) by warm-starting (Nocedal & Wright, 2006)

the solution for the LCP solver with the last solution.

7.3.1 Normal contact constraints The equation below extends Equation 44 to multiple points

of contact (via the relationship φ̇ = Nv), where N ∈ Rn is the matrix of generalized wrenches

along the contact normals (see Appendix A):

−
−
φ

∆t
≤ −

N
+

v ⊥ fN ≥ 0 (68)

Because φ is clearly time-dependent and the control loop executes at discrete points in time, N

must be treated as constant over a time interval. −
N indicates that points of contact are drawn

from the current configuration of the environment and multi-body. Analogous to time-stepping

approaches for rigid body simulations with rigid contact, all possible points of contact between

rigid bodies over the interval t0 and tf can be incorporated into N as well: as in time stepping

approaches for simulation, it may not be necessary to apply forces at all of these points (the ap-

proaches implicitly can treat unnecessary points of contact as inactive, though additional computa-

tion will be necessary). Stewart (1998) showed that such an approach will converge to the solution

of the continuous time dynamics as ∆t = (tf − t0)→ 0. Given a sufficiently high control rate, ∆t

will be small and errors from assuming constant N over this interval should become negligible.

7.3.2 Discretized rigid body dynamics equation The discretized version of Equation 1, now

separating contact forces into normal (
−
N) and tangential wrenches (−S and −

T are matrices of

121

generalized wrenches along the first and second contact tangent directions for all contacts) is:

M(
+

v − −
v) =NTfN + STfS + TTfT −PTτ + ∆t

−
fext (69)

Treating inverse dynamics at the velocity level is necessary to avoid the inconsistent configurations

that can arise in the rigid contact model when forces are required to be non-impulsive (Stewart,

2000a, as also noted in Section 7.1.4). As noted above, Stewart has shown that for sufficiently small

∆t, +
v converges to the solution of the continuous time dynamics and contact equations (1998).

7.3.3 Inverse dynamics constraint The inverse dynamics constraint is used to specify the desired

velocities only at actuated joints:

P
+

v = q̇des (70)

Desired velocities q̇des are calculated as:

q̇des ≡ q̇ + ∆tq̈des (71)

7.3.4 No-slip (infinite friction) constraints Utilizing the first-order discretization (revisit Sec-

tion 7.1.4 to see why this is necessary), preventing tangential slip at a contact is accomplished by

using the constraints:

S
+

v = 0 (72)

T
+

v = 0 (73)

These constraints indicate that the velocity in the tangent plane is zero at time tf ; the matrix

representation was found to be more convenient for expression as quadratic programs and linear

122

complementarity problems than:

vsi
+

= vti
+

= 0 for i = 1, . . . , n,

i.e., the notation used in Section 7.1.4. All presented equations are compiled below:

Complementarity-based inverse dynamics without slip

non−interpenetration, compressive force, and normal complementarity constraints:

0 ≤ fN ⊥N
+

v ≥ −
−
φ

∆t

no−slip constraints:

S
+

v = 0

T
+

v = 0

inverse dynamics:

P
+

v = q̇des

first−order dynamics:

+

v =
−
v + M−1(NTfN + STfS + TTfT −PTτ + ∆tfext)

Combining Equations 68–70, 72, and 73 into a mixed linear complementarity problem (MLCP,

see Appendix 7.1.2) yields:



M −PT −ST −TT −NT

P 0 0 0 0

S 0 0 0 0

T 0 0 0 0

N 0 0 0 0





+
v

τ

fS

fT

fN


+



κ

−q̇des

0

0
−
φ

∆t


=



0

0

0

0

wN


(74)

fN ≥ 0,wN ≥ 0,fT
NwN = 0 (75)

123

where κ , −∆tfext−M
−
v. The MLCP block matrices are defined in the form of Equations 31–

153 from Appendix 7.1.2 and draw from Equations 74 and 75 to yield:

A ≡



M −PT −ST −TT

P 0 0 0

S 0 0 0

T 0 0 0


C ≡



−NT

0

0

0


D ≡ −CT B ≡ 0

x ≡



+
v

τ

fS

fT


g ≡



−κ

q̇des

0

0


y ≡ fN h ≡

−
φ

∆t

Applying Equations 36 and 37 (again see Appendix 7.1.2), the MLCP is transformed to a LCP

(r,Q). Substituting in variables from the no-slip inverse dynamics model and then simplifying

yields:

Q ≡ CTA−1C (76)

r ≡
−
φ

∆t
+ CTA−1g (77)

The definition of matrix A from above may be singular, which would prevent inversion, and

thereby, conversion from the MLCP to an LCP. Matrix P was defined as a selection matrix with

full row rank, and the generalized inertia (M) is symmetric, positive definite. If S and T have full

row rank as well, or the largest subset of row blocks of S and T are identified such that full row

rank is attained, A will be invertible as well (this can be seen by applying blockwise matrix inver-

sion identities). Algorithm 3 performs the task of ensuring that matrix A is invertible. Removing

124

the linearly dependent constraints from the A matrix does not affect the solubility of the MLCP, as

proved in Appendix C.

From Bhatia (2007), a matrix of Q’s form must be non-negative definite, i.e., either positive-

semidefinite (PSD) or positive definite (PD). Q is the right product of C with its transpose about a

symmetric PD matrix, A. Therefore, Q is symmetric and either PSD or PD.

The singularity check on Lines 6 and 10 of Algorithm 3 is most quickly performed using

Cholesky factorization; if the factorization is successful, the matrix is non-singular. Given that

M is non-singular (it is symmetric, PD), the maximum size of X in Algorithm 3 is m ×m; if X

were larger, it would be singular.

The result is that the time complexity of Algorithm 3 is dominated by Lines 6 and 10. As X

changes by at most one row and one column per Cholesky factorization, singularity can be checked

by O(m2) updates to an initial O(m3) Cholesky factorization. The overall time complexity is

O(m3 + nm2).

Algorithm 3 FIND-INDICES(M,P,S,T), determines the row indices (S, and T) of S and T such
that the matrix A (Equation 31 in Appendix 7.1.2) is non-singular.

1: S ← ∅
2: T ← ∅
3: for i = 1, . . . , n do . n is the number of contacts
4: S∗ ← S ∪ {i}
5: Set X←

[
PT ST

S∗ TT
T
]

6: if XTM−1X not singular then
7: S ← S∗
8: T ∗ ← T ∪ {i}
9: Set X←

[
PT ST

S TT
T ∗
]

10: if XTM−1X not singular then
11: T ← T ∗
12: return {S, T }

7.3.5 Retrieving the inverse dynamics forces Once the contact forces have been determined,

one solves Equations 69 and 70 for {+v, τ}, thereby obtaining the inverse dynamics forces. While

the LCP is solvable, it is possible that the desired accelerations are inconsistent. As an example,

125

consider a legged robot standing on a ground plane without slip (such a case is similar to, but not

identical to infinite friction, as noted in Section 7.1.4), and attempting to splay its legs outward

while remaining in contact with the ground. Such cases can be readily identified by verifying

that N
+
v ≥ −

−
φ

∆t
. If this constraint is not met, consistent desired accelerations can be determined

without re-solving the LCP. For example, one could determine accelerations that deviate minimally

from the desired accelerations by solving a quadratic program:

minimize
+v,τ

||P+

v − q̇des|| (78)

subject to: N
+

v ≥ −
−
φ

∆t
(79)

S
+

v = 0 (80)

T
+

v = 0 (81)

M
+

v = M
−
v + NTfN + STfS + TTfT + PTτ + ∆tfext (82)

This QP is always feasible: τ = 0 ensures that

N
+

v ≥ −
−
φ

∆t
(83)

S
+

v = 0 (84)

T
+

v = 0 (85)

7.3.6 Indeterminacy mitigation A pivoting LCP solver (see Appendix B) was warm started to

bias the solver toward applying forces at the same points of contact (see Figure 51)—tracking

points of contact using the rigid body equations of motion—as were active on the previous inverse

dynamics call (see Algorithm 4). Kuindersma et al. (2014) also use warm starting to solve a dif-

ferent QP resulting from contact force prediction. Although Kuindersma et al. use warm starting

to generally speed the solution process, warm starting was used in this chapter to address indeter-

126

minacy in the rigid contact model (the inverse dynamics implementation presented in this section

benefits from the increased computational speed as well).

Using warm starting, Algorithm 4 will find a solution that predicts contact forces applied at the

exact same points on the last iteration assuming that such a solution exists. Such solutions do

not exist () when the numbers and relative samples from the contact manifold change or () as

contacts transition from active (φ̇i(x,v) ≤ 0) to inactive (φ̇i(x,v) > 0), or vice versa. Case

() implies immediate precedence or subsequence of case (), which means that discontinuities in

actuator torques will occur for at most two control loop iterations around a contact change (one

discontinuity will generally occur due to the contact change itself).

Warm-Starting Example

Iteration i Iteration i+ 1 Iteration i+ 2

Left (“cold start”): with four active contacts, the pivoting solver chooses three arbitrary non-basic
indices (in β, see Appendix B) to solve the LCP and then returns the solution. The solution applies
the majority of upward force to two feet and applies a smaller amount of force to the third.
Center (“warm start”): With four active contacts, the pivoting solver chooses the same three
non-basic indices as the last solution to attempt to solve the LCP. The warm-started solution will
distribute upward forces similarly to the last solution, tending to provide consecutive solves with
continuity over time.
Right (“cold start”): one foot of the robot has broken contact with the ground; there are now three
active contacts. The solver returns a new solution, applying the majority of normal force to two
legs, and applying a small amount of force to the third.

7.3.7 Scaling inverse dynamics runtime linearly in number of contacts The multi-body’s num-

ber of generalized coordinates (m) are expected to remain constant. The number of contact points,

n, depends on the multi-body’s link geometries, the environment, and whether the inverse dynam-

ics approach should anticipate potential contacts in [t0, tf] (as discussed in Section 7.3.1). This

section describes a method to solve inverse dynamics problems with simultaneous contact force

127

computation that scales linearly with additional contacts. This method will be applicable to all

inverse dynamics approaches presented in this chapter except that described in Section 7.4: that

problem results in a copositive LCP (Cottle et al., 1992) that the algorithm described in this section

cannot generally solve.

To this point in the chapter presentation, time complexity has been dominated by the O(n3)

expected time solution to the LCPs. However, a system with m degrees-of-freedom requires no

more than m positive force magnitudes applied along the contact normals to satisfy the constraints

for the no-slip contact model. Proof is provided in Appendix D. The following describes how that

proof can be leveraged to generally decrease the expected time complexity.

Modified PPM I Algorithm This section describes a modification to the Principal Pivoting

Method I (Cottle et al., 1992) (PPM) for solving LCPs (see description of this algorithm in Ap-

pendix B) that leverages the proof in Appendix D to attain expectedO(m3+nm2) time complexity.

A brief explanation of the mechanics of pivoting algorithms is provided in Appendix B; the com-

mon notation of β as the set of basic variables and β as the set of non-basic variables is used.

The PPM requires few modifications toward the purpose of this chapter. These modifications

are presented in Algorithm 4. First, the full matrix NM−1NT is never constructed, because the

construction is unnecessary and would require O(n3) time. Instead, Line 11 of the algorithm con-

structs a maximum m×m system; thus, that operation requires only O(m3) operations. Similarly,

Lines 12 and 13 also leverage the proof from Appendix D to computew† and a† efficiently (though

these operations do not affect the asymptotic time complexity). Expecting that the number of iter-

ations for a pivoting algorithm is O(n) in the size of the input (Cottle et al., 1992) and assuming

that each iteration requires at most two pivot operations (each rank-1 update operation to a ma-

trix factorization will exhibit O(m2) time complexity), the asymptotic complexity of the modified

PPM I algorithm is O(m3 + m2n). The termination conditions for the algorithm are not affected

by the modifications.

The reader should note that Baraff has proven that LCPs of the form (Hw,HQ−1HT), where

H ∈ Rp×q,Q ∈ Rq×q,w ∈ Rq, and Q is symmetric, PD are solvable. Thus, the inverse dynamics

128

Algorithm 4 {z,w,B} = PPM(N ,M ,f ∗, z−) Solves the LCP (NM−1f ∗,NM−1NT) re-
sulting from convex, rigid contact models (the no-slip model and the complementarity-free
model with Coulomb friction) . B∗ are the set of non-basic indices returned from the last call
to PPM.
1: n← rows(N)
2: r ← N · f∗
3: i← arg mini ri . Check for trivial solution
4: if ri ≥ 0 then
5: return {0, r}
6: B ← B∗

7: if B = ∅ then
8: B ← {i} . Establish initial nonbasic indices
9: B ← {1, . . . , n} − B . Establish basic indices

10: while true do
11: A← NB ·M−1 ·NB

T

12: b← NB · f∗
13: z† ← A−1 · −b . Compute z non-basic components
14: a† ←M−1 ·NB

Tz† + f∗

15: w† ← N · a†
16: i← arg mini w

†
i . Search for index to move into non-basic set

17: if w†i ≥ 0 then
18: j ← arg mini z

†
i . No index to move into the non-basic set; search for index to move into the basic set

19: if z†j < 0 then
20: k ← B(j)
21: B ← B ∪ {k} . Move index k into basic set
22: B ← B − {k}
23: continue
24: else
25: z ← 0
26: zB ← z†

27: w ← 0
28: wB ← w†

29: return {z,w}
30: else
31: B ← B ∪ {i} . Move index i into non-basic set
32: B ← B − {i}
33: j ← arg mini z

†
i . Try to find an index to move into the basic set

34: if z†j < 0 then
35: k ← B(j)
36: B ← B ∪ {k} . Move index k into basic set
37: B ← B − {k}

129

model will always possess a solution (1994).

7.4 Inverse dynamics with Coulomb friction

Though control with the absence of slip may facilitate grip and traction, the assumption is often

not the case in reality. Foot and manipulator geometries, and planned trajectories must be specially

planned to prevent sliding contact, and assuming sticking contact may lead to disastrous results

(see discussion on experimental results in Section 7.7.2). Implementations of controllers that limit

actuator forces to keep contact forces within the bounds of a friction constraint have been suggested

to reduce the occurrence of unintentional slip in walking robots (Righetti et al., 2013). These

methods also limit the reachable space of accelerative trajectories that the robot may follow, as

all movements yielding sliding contact would be infeasible. The model presented in this section

permits sliding contact. This section formulates inverse dynamics using the computational model

of rigid contact with Coulomb friction developed by Stewart & Trinkle (1996) and Anitescu &

Potra (1997); the equations in this section closely follow those in Anitescu & Potra (1997).

7.4.1 Coulomb friction constraints Still utilizing the first-order discretization of the rigid body

dynamics (Equation 69), the linearized Coulomb friction constraints are reproduced from Anitescu

& Potra (1997) without further explanation (identical except for slight notational differences):

0 ≤ Eλ+
−
F

+

v ⊥ fF ≥ 0 (86)

0 ≤ µfN − ETfF ⊥ λ ≥ 0 (87)

where E ∈ Rn×nk (k is the number of edges in the polygonal approximation to the friction cone)

retains its definition from Anitescu & Potra (1997) as a sparse selection matrix containing blocks

of “ones” vectors, µ ∈ Rn×n is a diagonal matrix with elements corresponding to the coefficients

of friction at the n contacts, λ is a variable roughly equivalent to magnitude of tangent velocities

after contact forces are applied, and F ∈ Rnk×m (equivalent to D in Anitescu & Potra, 1997) is the

matrix of wrenches of frictional forces at k tangents to each contact point. If the friction cone is

130

approximated by a pyramid (an assumption made throughout the remainder of the chapter), then:

F ≡
[
ST −ST TT −TT

]T
fF ≡

[
f+
S

T
f−S

T
f+
T

T
f−T

T

]T

where fS = f+
S − f

−
S and fT = f+

T − f
−
T . Given these substitutions, the contact model with

inverse dynamics becomes:

Complementarity-based inverse dynamics

non−interpenetration, compressive force, and normal complementarity constraints:

0 ≤ fN ⊥N
+

v ≥ −
−
φ

∆t
(88)

Coulomb friction constraints:

0 ≤ λe+ F
+

v ⊥ fF ≥ 0 (89)

0 ≤ µfN − eTfF ⊥ λ ≥ 0 (90)

inverse dynamics:

P
+

v = q̇des (91)

first−order dynamics:

+

v =
−
v + M−1(NTfN + FTfF + ∆tfext −PTτ) (92)

7.4.2 Resulting MLCP Combining Equations 68–70 and 86–87 results in the MLCP:



M −PT −NT −FT 0

P 0 0 0 0

N 0 0 0 0

F 0 0 0 E

0 0 µ −ET 0





+
v

τ

fN

fF

λ


+



−κ

−q̇des
−
φ

∆t

0

0


=



0

0

wN

wF

wλ


(93)

131

fN ≥ 0,wN ≥ 0,fT
NwN = 0 (94)

fF ≥ 0,wF ≥ 0,fT
FwF = 0 (95)

λ ≥ 0,wλ ≥ 0,λTwλ = 0 (96)

Vectors wN and wF correspond to the normal and tangential velocities after impulsive forces

have been applied.

Transformation to LCP and proof of solution existence The MLCP can be transformed to a

LCP as described by Cottle et al. (1992) by solving for the unconstrained variables +
v and τ . This

transformation is possible because the matrix:

X ≡

M PT

P 0

 (97)

is non-singular. Proof comes from blockwise invertibility of this matrix, which requires only invert-

ibility of M (guaranteed because generalized inertia matrices are positive definite) and PM−1PT.

This latter matrix selects exactly those rows and columns corresponding to the joint space inertia

matrix (Featherstone, 1987), which is also positive definite. After eliminating the unconstrained

variables +
v and τ , the following LCP results:


NM−1NT NM−1FT E

FM−1NT FM−1FT 0

−ET µ 0



fN

fF

λ

+


−
φ

∆t
−NM−1κ

−FM−1κ

0

 =


wN

wF

wλ

 (98)

132

fN ≥ 0,wN ≥ 0,fT
NwN = 0 (99)

fF ≥ 0,wF ≥ 0,fT
FwF = 0 (100)

λ ≥ 0,wλ ≥ 0,λTwλ = 0 (101)

The discussion in Stewart & Trinkle (1996) can be used to show that this LCP matrix is copositive

(see Cottle, et al., 1992, Definition 3.8.1), since for any vector z =

[
fN

T fF
T λT

]T
≥ 0,


fN

fF

λ


T 

NM−1NT NM−1FT E

FM−1NT FM−1FT 0

µ −ET 0



fN

fF

λ

 =

(NTfN + FTfN)
T
M−1(NTfN + FTfN) + fN

Tµλ ≥ 0 (102)

because M−1 is positive definite and µ is a diagonal matrix with non-negative elements. The

transformation from the MLCP to the LCP yields (k+2)n LCP variables (the per-contact allocation

is: one for the normal contact magnitude, k for the frictional force components, and one for an

element of λ) and at most 2m unconstrained variables.

As noted by Anitescu & Potra (1997), Lemke’s Algorithm can provably solve such copositive

LCPs (Cottle et al., 1992) if precautions are taken to prevent cycling through indices. After solving

the LCP, joint torques can be retrieved exactly as in Section 7.3.5. Thus, this section has shown—

using elementary extensions to the work in Anitescu & Potra (1997)—that a right inverse of the

non-impacting rigid contact model exists (as first broached in Section 7.0.1). Additionally, the

expected running time of Lemke’s Algorithm is cubic in the number of variables, so this inverse

can be computed in expected polynomial time.

7.4.3 Contact indeterminacy Though the approach presented in this section produces a solution

to the inverse dynamics problem with simultaneous contact force computation, the approach can

133

converge to a vastly different, but equally valid solution at each controller iteration. However, un-

like the no-slip model, it is unclear how to bias the solution to the LCP, because a means for warm

starting Lemke’s Algorithm is currently unknown (previous experience confirms the common wis-

dom that using the basis corresponding to the last solution usually leads to excessive pivoting).

Generating a torque profile that would evolve without generating torque chatter requires checking

all possible solutions of the LCP if this approach is to be used for robot control. Generating all

solutions requires a linear system solve for each combination of basic and non-basic indices among

all problem variables. Enumerating all possible solutions yields exponential time complexity, the

same as the worst case complexity of Lemke’s Algorithm (Lemke, 1965). After all solutions have

been enumerated, torque chatter would be eliminated by using the solution that differs minimally

from the last solution. Algorithm 5 presents this approach.

Algorithm 5 {x, ε} =MINDIFF(A,B,C,D, g,h,B,x0, n) Computes the solution to the
LCP (h−DA−1g,B−DA−1C) that is closest (by Euclidean norm) to vector x0 using a
recursive approach. n is always initialized as rows(B).
1: if n > 0 then
2: {x1, ε1} =MINDIFF(A,B,C,D, g,h,B,x0, n− 1)
3: B ← {B, n} . Establish nonbasic indices
4: {x2, ε2} =MINDIFF(A,B,C,D, g,h,B,x0, n− 1)
5: if ε1 < ε2 then return {x1, ε1}
6: else return {x2, ε2}
7: else
8: {z,w} = LCP(hnb −DnbA

−1g,Bnb −DnbA
−1Cnb)

9: x← A−1(Cnbznb + g)
10: return {x, ‖x− x0‖}

The fact that all solutions to the problem can be enumerated in exponential time proves that solv-

ing the problem is at worst NP-hard, though following an enumerative approach is not practical.

7.5 Convex inverse dynamics without normal complementarity

This section describes an approach for inverse dynamics that mitigates indeterminacy in rigid

contact using the impact model described in Section 7.1.4. The approach is almost identical to

the “standard” rigid contact model described in Section 7.1.4, but for the absence of the normal

complementarity constraint.

134

The approach works by determining contact and actual forces in a first step and then solving

within the nullspace of the objective function (Equation 61) such that joint forces are minimized.

The resulting problem is strictly convex, and thus torques are continuous in time (and more likely

safe for a robot to apply) if the underlying dynamics are smooth. This latter assumption is violated

only when a discontinuity occurs from one control loop iteration to the next, as it would when

contact is broken, bodies newly come into contact, the contact surface changes, or contact between

two bodies switches between slipping and sticking.

7.5.1 Two-stage vs. single-stage approaches Torque chatter due to contact indeterminacy can

be avoided by ensuring that contact forces do not cycle rapidly between points of contact under

potentially indeterminate contact configurations across successive controller iterations. Zapolsky

& Drumwright (2014) eliminate torque chatter using a QP stage that searches over the optimal set

of contact forces (using a convex relaxation to the rigid contact model) for forces that minimize

the `2-norm of joint torques.

An alternative, single-stage approach is described by Todorov (2014), who regularizes the quad-

ratic objective matrix to attain the requisite strict convexity. Another single-stage approach (which

is tested in Section 7.6) uses the warm starting-based solution technique described in Section 7.3

to mitigate contact indeterminacy.

Single-stage approaches are expected to generally run faster. However, the two-stage approach

described below confers the following advantages over single-stage approaches: () no regular-

ization factor need be chosen—there has yet to be a physical interpretation behind regularization

factors, and computing a minimal regularization factor (via, e.g., singular value decomposition)

would be computationally expensive; and () the two-stage approach allows the particular solution

to be selected using an arbitrary objective criterion—minimizing actuator torques is particularly

relevant for robotics applications. Although two stage approaches are slower, performance suit-

ably fast for real-time control loops on quadrupedal robots has been demonstrated in previous work

(Zapolsky & Drumwright, 2014). The two-stage approach is presented without further comment,

as the reader can realize the single-stage approach readily by regularizing the Hessian matrix in

135

the quadratic program.

7.5.2 Computing inverse dynamics and contact forces simultaneously (Stage I) For simplicity

of presentation, it is assumed that the number of edges in the approximation of the friction cone

for each contact is four; in other words, a friction pyramid will be used in place of a cone. The

inverse dynamics problem is formulated as follows:

As discussed in Section 7.1.4 the contact model always has a solution (i.e., the QP is always

feasible) and that the contact forces will not do positive work (Drumwright & Shell, 2010). The

addition of the inverse dynamics constraint (Equation 108) will not change this result—the fric-

tionless version of this QP is identical to an LCP of the form that Baraff has proven solvable (see

Section 7.3.7), which means that the QP is feasible. As in the inverse dynamics approach in Sec-

tion 7.4, the first order approximation to acceleration avoids inconsistent configurations that can

occur in rigid contact with Coulomb friction. The worst-case time complexity of solving this con-

vex model is polynomial in the number of contact features (Boyd & Vandenberghe, 2004). High

frequency control loops limit n to approximately four contacts given present hardware and using

fast active-set methods.

136

Complementarity-free inverse dynamics: Stage I

dissipate kinetic energy maximally:

minimize
fN ,fF ,

+v,τ

1

2

+

v
T
M

+

v (103)

subject to: non−interpenetration constraint:

N
+

v ≥ −
−
φ

∆t
(104)

variable non−negativity (for formulation convenience):

fN ≥ 0, fF ≥ 0 (105)

Coulomb friction:

µfNi
≥ 1TfFi

(106)

first−order velocity relationship:

+

v =
−
v + M−1 (NTfN + FTfF + ∆tfext −PTτ

)
(107)

inverse dynamics:

P
+

v = q̇des (108)

Removing equality constraints The optimization in this section is a convex quadratic program

with inequality and equality constraints. The equality constraints are removed through substitution.

This reduces the size of the optimization problem; removing linear equality constraints also elimi-

nates significant variables if transforming the QP to a LCP via optimization duality theory (Cottle

et al., 1992).4

4such a transformation is used in this chapter, permitting the application of the LEMKE solver (Fackler & Miranda,
2011), which is freely available, numerically robust (using Tikhonov regularization), and relatively fast.

137

The resulting QP takes the form:

minimize
fN ,fF

fN
fF


T
NX−1NT NX−1FT

FX−1NT FX−1FT


fN
fF

+

−Nκ

−Fκ


 (109)

subject to:
[
NX−1NT NX−1FT

]fN
fF

−Nκ ≥ 0 (110)

fN ≥ 0,fF ≥ 0 (111)

µfNi
≥ 1TfFi

(112)

Once fN and fF have been determined, the inverse dynamics forces are computed using:

+
v

τ

 = X−1

−κ+ NTfN + FTfF

q̇des

 (113)

As in Section 7.3.5, consistency in the desired accelerations can be verified and modified without

re-solving the QP if found to be inconsistent.

Minimizing floating point computations Because inverse dynamics may be used within real-

time control loops, this section describes an approach that can minimize floating point computa-

tions over the formulation described above.

Assume that the joint forces fID necessary to solve the inverse dynamics problem are first solved

for under no contact constraints. The new velocity +
v is now defined as:

+

v =
−
v + M−1

NTfN + FTfF + ∆tfext +

 0

∆t(fID + x)


 (114)

where x is defined to be the actuator forces that are added to fID to counteract contact forces. To

simplify the derivations for this inverse dynamic formulation, the following vectors and matrices

are defined:

138

R ≡
[
NT FT

]
(115)

z ≡
[
fN fF

]T
(116)

M ≡

nb nq

nb

nq

A B

BT C

 (117)

M−1 ≡

nb nq

nb

nq

D E

ET G

 (118)

j ≡ vb +

[
D E

]∆tfext +

 0

∆tfID


 (119)

k ≡ vq +

[
ET G

]∆tfext +

 0

∆tfID


 (120)

fID ≡ Cq̈ − fext,nq (121)

Where nq is the total joint degrees of freedom of the robot, and nb is the total base degrees of

freedom for the robot (nb = 6 for floating bases).

The components of +
v are then defined as follows:

+

vb ≡ j +

[
D E

]Rz +

 0

∆tx


 (122)

+

vq ≡ k +

[
ET G

]Rz +

 0

∆tx


 = q̇des (123)

139

Solving for x from the latter equation:

x =

G−1
(

+
vq − k −

[
ET G

]
Rz

)
∆t

(124)

Equation 124 indicates that once contact forces are computed, determining the actuator forces for

inverse dynamics requires solving only a linear equation. Substituting the solution for x into Eqn.

122 yields:
+

vb = j +

[
D E

]
Rz + EG−1

(
+

vq − k −
[
ET G

]
Rz

)
(125)

To simplify further derivation, a new matrix and a new vector are defined:

Z ≡
([

D E

]
− EG−1

[
ET G

])
R (126)

p ≡ j + EG−1(
+

vq − k) (127)

Now, +
vb can be defined simply, and solely in terms of z, as:

+

vb ≡ Zz + p (128)

The objective function (Eqn. 103) can now be represented in block form as:

f(.) ≡ 1

2

+
vb

+
vq


T A B

BT C


+
vb

+
vq

 (129)

which is identical to:

f(.) ≡ 1

2

+

vb
T
A

+

vb +
+

vbB
T+

vq +
1

2

+

vq
T
C

+

vq (130)

As minimizing f(.) with regard to z does not depend on the last term of the above equation,

that term is ignored hereafter. Expanding remaining terms using Equation 122, the new objective

140

function is:

f(.) ≡ 1

2
zTZTAZz + zTZTAp+ zTZTB

+

vq (131)

≡ 1

2
zTZTAZz + zT

(
ZTAp+ ZTB

+

vq

)
(132)

subject to the following constraints:

NT

Zz + p

v∗q

 ≥ − −φ
∆t

(133)

fN,i ≥ 0 (for i = 1 . . . n) (134)

µfN,i ≥ cS,i + cT,i (135)

Symmetry and positive semi-definiteness of the QP follows from symmetry and positive definite-

ness of A. Once the solution to this QP is determined, the actuator forces x+ fID determined via

inverse dynamics can be recovered.

Floating point operation counts Operation counts for matrix-vector arithmetic and numerical

linear algebra are taken from Hunger (2007).

Before simplifications: Floating point operations (flops) necessary to setup the Stage I model as

presented initially sum to 77,729 flops, substituting: m = 18, nq = 16, n = 4, k = 4.

141

operation flops
LDLT(X) m3

3
+m2(nq) +m2 +m(nq)2 + 2m(nq)− 7m

3
+ (nq)3

3
+ (nq)2 − 7(nq)

3
+ 1

X−1NT m+ 2m2n+ (nq) + 4mn(nq) + 2n(nq)2

X−1FT m+ 2km2n+ (nq) + 4kmn(nq) + 2kn(nq)2

NX−1NT 2mn2 −mn
FX−1NT 2mn2k −mn
FX−1FT 2mnk2 −mnk

κ 2m2 −m
X−1κ 2(m+ (nq))2

NX−1κ mn−m
FX−1κ mnk −m
τ 2(m+ (nq))2

Table 10: Floating point operations (flops) per task without floating point optimizations.

After simplifications: Floating point operations necessary to setup the Stage I model after modified

to reduce computational costs sum to 73,163 flops when substituting: m = 18, nq = 16, n =

4, k = 4, nb = m − nq, a total of 6.24% reduction in computation. When substituting: m =

18, nq = 12, n = 4, k = 4, nb = m − nq, 102,457 flops were observed for this new method

and 62,109 flops before simplification. Thus, a calculation of the total number of floating point

operations should be performed to determine whether the floating point simplification is actually

more efficient for a particular robot.

operation flops
(LLT(M))

−1 2
3
m3 + 1

2
m2 + 5

6
m

LLT(G) 1
3
(nq)3 + 1

2
(nq)2 + 1

6
nq

Z nb m+ nq n(nk + 1)(2m− 1) + nb m(2nq − 1) + 2nq2m
p 2nb nq + 2nq2 + 3nq + 2nb+ 2m+ 2m nq

ZTAZ 2nb2(n(nk + 1))− nb (n(nk + 1)) + 2nb (n(nk + 1))2 − (n(nk + 1))2

ZTAp (n(nk + 1) + nb)(2nb− 1)
ZTBv∗q (n(nk + 1) + nq)(2nq − 1)
NTZ n2(nk + 1)(2nb− 1)

NT
[p
v∗q

]
n(2m− 1)

Table 11: Floating point operations (flops) with floating point optimizations.

Recomputing Inverse Dynamics to Stabilize Actuator Torques (Stage II) In the case that the

matrix ZTAZ is singular, the contact model is only convex rather than strictly convex (Boyd &

142

Figure 52: Plot of torque chatter while controlling with inverse dynamics using an indeterminate contact model
(Stage 1) versus the smooth torque profile produced by a determinate contact model (Stage 1 & Stage 2).

Vandenberghe, 2004). Where a strictly convex system has just one optimal solution, the convex

problem may have multiple equally optimal solutions. Conceptually, contact forces that predict

that two legs, three legs, or four legs support a walking robot are all equally valid. A method is

thus needed to optimize within the contact model’s solution space while favoring solutions that

predict contact forces at all contacting links (and thus preventing the rapid torque cycling between

arbitrary optimal solutions). As Section 7.1.5 noted, defining a manner by which actuator torques

evolve over time, or selecting a preferred distribution of contact forces may remedy the issues

resulting from indeterminacy. One such method would select—from the space of optimal solutions

to the indeterminate contact problem—the one that minimizes the `2-norm of joint torques. If the

solution that was computed in the last section is denoted as z0, the following optimization problem

will yield the desired result:

Complementarity-free inverse dynamics: Stage II

find minimum norm motor torques:

minimize
fN ,fF

1

2
τTτ (136)

subject to: Equations 104–108

maintain Stage I objective:

1

2

+

vTM
+

v ≤ f(z0) (137)

The method described in Section 7.5.2 was referred to as Stage I and the optimization problem

143

above Stage II. Constraining for a quadratic objective function (Equation 103) with a quadratic in-

equality constraint yields a QCQP that may not be solvable sufficiently quickly for high frequency

control loops. This section now presents how to use the nullspace of ZTAZ to perform this second

optimization without explicitly considering the quadratic inequality constraint; thus, a QP problem

formulation is retained. Assume that the matrix W gives the nullspace of ZTAZ. The vector of

contact forces will now be given as z + Ww, where w will be the optimization vector.

The kinetic energy from applying the contact impulses is:

ε2 =
1

2
(z + Ww)TZTAZ(z + Ww) + (z + Ww)T(ZTAp+ ZTB

+

vq)

=
1

2
zTZTAZz + zT(ZTAp+ ZTB

+

vq) +wTWT(ZTAp+ ZTB
+

vq)

The terms 1
2
wTWTZTAZWw and zZTAZWw are not included above because both are zero:

W is in the nullspace of ZTAZ. The energy dissipated in the second stage. ε2, should be equal to

the energy dissipated in the first stage, ε1. Thus ε2− ε1 = 0 is the value of interest. Algebra yields:

wTWT(ZTAp+ ZTB
+

vq) = 0 (138)

The `2-norm of joint torques is minimize with respect to contact forces by first defining y as:

y ≡
G−1

(
+
vq − k −

[
ET G

]
R(z + Ww)

)
∆t

(139)

The resulting objective is:

g(w) ≡ 1

2
yTy (140)

144

From this, the following optimization problem arises:

min
w

1

2
yTy (141)

subject to: (pTAT +
+

vq
TBT)ZWw = 0 (142)

NT

Z(z + Ww) + p

+
vq

 ≥ − −φ
∆t

(143)

(z + Ww)i ≥ 0, (for i = 1 . . . 5n) (144)

µi(z + Ww)i ≥ XSi
(z + Ww)Si

+ XTi(z + Ww)Ti (for i = 1 . . . n) (145)

Equation 144 constrains the contact force vector to only positive values, accounting for 5 positive

directions to which force can be applied at the contact manifold (n̂, ŝ,−ŝ, t̂,−t̂).5 A proof that Z ·

ker(ZTAZ) = 0 (Zapolsky & Drumwright, 2014) is used to render n+ 1 (Equations 142 and 143)

of 7n+ 1 linear constraints (Equations 142–145) unnecessary.

Finally, expanding and simplifying Equation 140 (removing terms that do not containw, scaling

by ∆t2), and using the identity U ≡
[
ET G

]
R yields:

g(w) ≡1

2
wTWTUTG−1

T
G−1UWw (146)

+ zTUTG−1
T
G−1UWw − +

vq
T
G−1

T
G−1UWw

+ kTG−1
T
G−1UWw

Finally, actuator torques for the robot can be retrieved by calculating y + fID.

Feasibility and time complexity It should be clear that a feasible point (w = 0) always exists

for the optimization problem. The dimensionality (n× n in the number of contact points) of

ZTAZ yields a nullspace computation of O(n3) and represents one third of the Stage II running

times in the experiments testing this controller. For quadrupedal robots with single point contacts,

5negative and positive ŝ and t̂ are considered because LEMKE requires all variables to be positive.

145

for example, the dimensionality of w is typically at most two, yielding fewer than 6n + 2 total

optimization variables (each linear constraint introduces six KKT dual variables for the simplest

friction cone approximation). Timing results given n contacts for this virtual robot are available in

Section 7.7.4.

7.6 Experiments

This section assesses the inverse dynamics controllers under a range of conditions on a virtual,

locomoting quadrupedal robot (depicted in Figures 53a) and a virtual manipulator grasping a box.

For points of comparison, performance data for three reference controllers (depicted in Figures 54a

and 54c) are also provided. These experiments also serve to illustrate that the inverse dynamics

approaches function as expected.

The effects of possible modeling infidelities and sensing inaccuracies are assessed by testing

locomotion performance on rigid planar terrain, rigid non-planar terrain, and on compliant planar

terrain. The last of these is an example of modeling infidelity, as the compliant terrain violates the

assumption of rigid contact. Sensing inaccuracies may be introduced from physical sensor noise

or perception error producing, e.g., erroneous friction or contact normal estimates. All code and

data for experiments conducted in simulation, as well as videos of the virtual robots, are located

(and can thus be reproduced) at:

http://github.com/PositronicsLab/idyn-experiments.

7.6.1 Platforms The performance of all controllers are evaluated on a simulated quadruped (see

Figure 53a). This test platform measures 16 cm tall and has three degree of freedom legs. Its feet

are modeled as spherical collision geometries, creating a a single point contact manifold with the

terrain. This platform is used to assess the effectiveness of the inverse dynamics implementations

with one to four points of contact. Results presented from this platform are applicable to biped

locomotion as well, the only differentiating factor being the presence of a more involved planning

and balance system than the one driving the quadruped.

146

(a) A quadruped robot in the MOBY simulator on planar
terrain.

(b) A fixed-base manipulator in the
MOBY simulator grasping a box with

four spherical fingertips.

Figure 53: Snapshots of the simulated robotic platforms that were considered in the experiments.

Additionally, adaptability of this approach is demonstrated on a manipulator grasping a box (see

Figure 53b). The arm has seven degrees of freedom and each finger has one degree of freedom,

totaling eleven actuated degrees of freedom. The finger tips have spherical collision geometries,

creating a a single point contact manifold with a grasped object at each fingertip. The grasped box

has six non-actuated degrees of freedom with a surface friction that is specified in each experiment.

7.6.2 Source of planned trajectories The system used to generate locomotion trajectories for

quadrupedal robots is a reactive planning framework that produces a continuous velocity com-

mand with cubicly splined trajectories (see9). The locomotion framework is used to validate the

inverse dynamics controller presented in this chapter because it allows us to control exclusively

with accelerative joint commands which are then passed to the inverse dynamics system to pro-

duce the only joint torques supplied to the robot’s actuators. The quadruped’s performance in this

experiment is thus a product of exclusively the accuracy of the inverse dynamics system.

Arm trajectory planner The fixed-base manipulator is command to follow a simple sinusoidal

trajectory parameterized over time. The arm oscillates through its periodic motion about three

times per second. The four fingers gripping the box during the experiment are commanded to

147

maintain zero velocity and acceleration while gripping the box, and to close further if not contact-

ing the grasped object.

7.6.3 Evaluated controllers The same error-feedback control scheme is used in all cases for the

purpose of reducing joint tracking error from drift (see baseline controller in Figure 54a). The

gains used for PID control are identical between all controllers but differ between robots. The PID

error feedback controller is defined in configuration-space on all robots. Balance and stabilization

are handled in this trajectory planning stage, balancing the robot as it performs its task. The stabi-

lization implementation uses an inverted pendulum model for balance, applying only virtual com-

pressive forces along the contact normal to stabilize the robot (Sugihara & Nakamura, 2003). The

error-feedback and stabilization modules also accumulate error-feedback from configuration-space

errors into the vector of desired acceleration (q̈des) input into the inverse dynamics controllers.

The new controllers presented in this chapter will hereafter be referred to as ID(ti)solver,friction,

where the possible solvers are: solver = {QP, LCP} for QP and LCP-based optimization mod-

els, respectively; and the possible friction models are: friction = {µ,∞} for finite Coulomb

friction and no-slip models, respectively.

This experimental section compared the controllers implemented using the methods described

in Sections 7.3, 7.4 and 7.5, see Figure 54b) against the reference controllers (Figure 54c), using

finite and infinite friction coefficients to permit comparison against no-slip and Coulomb friction

models, respectively. Time “ti” in ID(ti) refers to the use of contact forces predicted at the current

controller time. The experimental (presented) controllers include: ID(ti)LCP,∞ is the ab initio

controller from Section 7.3 that uses an LCP model, to predict contact reaction forces with no-slip

constraints; ID(ti)LCP,µ is the ab initio controller from Section 7.4 that uses an LCP model, to

predict contact reaction forces with Coulomb friction; ID(ti)QP,µ is the controller from Section 7.5

that uses a QP-based optimization approach for contact force prediction; ID(ti)QP,∞ is the same

controller as ID(ti)QP,µ from Section 7.5.2, but set to allow infinite frictional forces.

148

Baseline Controller: PID

(a) Reference PID joint error-feedback controller, PD operational
space error-feedback controller (quadruped only), and VIIP

stabilization (quadruped only).

Experimental Controller: ID(ti)

(b) Inverse dynamics controller with predictive
contact forces (this work) generates an estimate
of contact forces at the current time (ẑ(t)) given

contact state and internal forces.

Reference Controller: ID(ti−k)

(c) Reference inverse dynamics controller using
exact sensed contact forces from the kth most
recent contact force measurement, z(t− k∆t)

Figure 54: Controllers used in experiments of this chapter.

The reference inverse dynamics controllers use sensed contact forces; the sensed forces are the

exact forces applied by the simulator to the robot on the previous simulation step (i.e., there is a

sensing lag of ∆t on these measurements, the simulation step size). The controller using these

exact sensed contact forces are denoted as ID(ti−1). Controller “ID(ti−1)” uses the exact value of

sensed forces from the immediately previous time step in simulation and represents an upper limit

on the performance of using sensors to incorporate sensed contact forces into an inverse dynamics

model. In situ implementation of contact force sensing should result in worse performance than the

controller described here, as it would be subject to inaccuracies in sensing and delays of multiple

controller cycles as sensor data is filtered to smooth noise; the effect of a second controller cycle

delay with ID(ti−2) is examined as well (see Figure 54c).

149

7.6.4 Software and simulation setup PACER runs alongside the open source simulator MOBY6,

which was used to simulate the legged locomotion scenarios used in the experiments. MOBY

was arbitrarily set to simulate contact with the Stewart-Trinkle / Anitescu-Potra rigid contact mod-

els (Stewart & Trinkle, 1996; Anitescu & Potra, 1997); therefore, the contact models utilized by the

simulator match those used in the reference controllers, permitting us to compare the contact force

predictions directly against those determined by the simulator. Both simulations and controllers

had access to identical data: kinematics (joint locations, link lengths, etc.), dynamics (generalized

inertia matrices, external forces), and friction coefficients at points of contact. MOBY provides ac-

curate time of contact calculation for impacting bodies, yielding more accurate contact point and

normal information. Other simulators step past the moment of contact, and approximate contact

information based on the intersecting geometries. The accurate contact information provided by

MOBY allows us to test the inverse dynamics controllers under more realistic conditions: contact

may break or be formed between control loops.

7.6.5 Terrain types for locomotion experiments The performance of the baseline, reference,

and presented controllers are evaluated on a planar terrain. Four cases are used to encompass

many typical surface properties experienced in locomotion. Sticky and slippery terrain are mod-

eled with frictional properties corresponding to a Coulomb friction of 0.1 for low (slippery) friction

and infinity for high (sticky) friction. Rigid and compliant terrain are also modeled, using rigid and

penalty (spring-damper) based contact model, respectively. The compliant terrain is modeled to be

relatively hard, yielding only 1 mm interpenetration of the foot into the plane while the quadruped

is at rest. The contact prediction models used to implement the inverse dynamic controllers pre-

sented in this chapter all assume rigid contact; a compliant terrain will assess whether the inverse

dynamics model for predictive contact is viable when the contact model of the environment does

not match its internal model. Successful locomotion using such a controller on a compliant surface

would indicate (to some confidence) that the controller is robust to modeling infidelities and thus

more robust in an uncertain environment.
6Obtained from https://github.com/PositronicsLab/Moby

150

https://github.com/PositronicsLab/Moby

Finally, the controllers are tested on a rigid height map terrain with non-vertical surface normals

and varied surface friction to assess robustness on a more natural terrain. The variability of the ter-

rain is limited to 3 cm in height (about one fifth the height of the quadruped see Figure 55). so that

the performance of the foothold planner (Chapter 9) would not bias performance results. Friction

values were selected between the upper and lower limits of Coulomb friction (µ ∼ U(0.1, 1.5))

found in various literature on legged locomotion.

Figure 55: Snapshot of a quadruped robot in the MOBY simulator on rough terrain.

7.6.6 Tasks The quadruped was directed to trot between a set of waypoints on a planar surface

for 30 virtual seconds. The process of trotting to a waypoint and turning toward a new goal stresses

some basic abilities needed to locomote successfully: () acceleration to and from rest; () turning

in place, and () turning while moving forward. For the trotting gait a gait duration of 0.3 seconds

per cycle was assigned with a duty-factor of 75% of the total gait duration, a step height of 1.5

cm, and touchdown times {0.25, 0.75, 0.75, 0.25} for {left front, right front, left hind, right hind}

feet, respectively. These values were chosen as a generally functional set of parameters for a

trotting gait on a 16 cm tall quadruped. The desired forward velocity of the robot over the test

151

was 20 cm/s. Over the interval of the experiment, the robots are in both determinate and possibly

indeterminate contact configurations and, as noted above, undergo numerous contact transitions.

Section 7.7 shows that the controllers presented in Sections 7.4 and 7.3 are feasible for controlling

a quadruped robot over a trot; contact force predictions made by all presented controllers are

compared to the reaction forces generated by the simulation (Section 7.7.2); running times of all

presented controllers given numerous additional contacts in Section 7.7.4 are measured as well.

The manipulator grasping a box is directed to follow a simple, sinusoidal joint trajectory. Dur-

ing this process the hand is susceptible to making contact transitions as the box slips from the

grasp. The divergence from the desired trajectory of the box is recorded over the course of each

experiment. The reader should note that the objective of this task is to accurately follow the joint

trajectory—predicting joint torques and contact forces with rigid contact constraints—not to hold

onto the box firmly.

7.7 Results

This section quantifies and plots results from the experiments in the previous section in five

ways: () joint trajectory tracking; () accuracy of contact force prediction; () torque command

smoothness; () center-of-mass behavior over a gait; () computation speed.

Trajectory tracking on planar surfaces: Tracking performance using the quadruped platform

is analyzed on both rigid planar and compliant planar surfaces (see Figure 56). Joint tracking

data was collected from the simulated quadruped using the baseline, reference and experimental

controllers to locomote on a planar terrain with varying surface properties. Numerical results for

these experiments are presented in Table 12. The experimental controllers implementing contact

force prediction,ID(ti), either outperformed or matched the performance of the inverse dynamics

formulations using sensed contact, ID(ti−1) and ID(ti−2).

As expected, the baseline controller (PID) performed substantially worse than all inverse dy-

namics systems for positional tracking on a low friction surface. Also, only the inverse dynamics

controllers that use predictive contact managed to gracefully locomote with no-slip contact.

152

The reference inverse dynamics controllers with sensed contact performed the worst on high

friction surfaces, only serving to degrade locomotion performance from the baseline controller over

the course of the experiment. The high level of performance for the PID error-feedback controller

was attributed the control system absorbing some of the error introduced by poor planning; In

such a case, more accurate tracking of planned trajectories might lead to worse overall locomotion

stability.

Trajectory Tracking: Quadruped

(a) High friction (µ =∞), rigid surface (b) Low friction (µ = 0.1), rigid surface

(c) High friction (µ =∞), compliant surface (d) Low friction (µ = 0.1), compliant surface

Figure 56: Average position error for all joints (E[|θ−θdes|]) over time while the quadruped performs a trotting
gait.

153

Trajectory Tracking Error

Rigid, Low Friction
Controller positional error velocity error
ID(ti)QP,µ 0.0310 1.9425
ID(ti)QP,∞ 0.0483 2.6295
ID(ti)LCP,µ 0.0239 1.8386
ID(ti)LCP,∞ - -
PID 0.0895 1.5569
ID(ti−1) 0.0325 1.7952
ID(ti−2) 0.0328 1.7830

Rigid, High Friction
Controller positional error velocity error
ID(ti)QP,µ 0.0486 2.2596
ID(ti)QP,∞ 0.0654 2.5737
ID(ti)LCP,µ 0.0259 1.8784
ID(ti)LCP,∞ 0.0260 1.8950
PID 0.0916 1.4653
ID(ti−1) 0.1317 2.5585
ID(ti−2) 0.1316 2.5608

Compliant, Low Friction
Controller positional error velocity error
ID(ti)QP,µ 0.0217 2.0365
ID(ti)QP,∞ - -
ID(ti)LCP,µ 0.0219 2.0786
ID(ti)LCP,∞ - -
PID 0.0850 1.5845
ID(ti−1) 0.0265 1.8858
ID(ti−2) 0.0267 1.8742

Compliant, High Friction
Controller positional error velocity error
ID(ti)QP,µ 0.0342 2.9360
ID(ti)QP,∞ 0.0446 3.9779
ID(ti)LCP,µ 0.0226 2.1243
ID(ti)LCP,∞ - -
PID 0.0850 1.5845
ID(ti−1) 0.1270 4.4377
ID(ti−2) 0.1270 4.2061

Table 12: Expected trajectory tracking error for quadrupedal locomotion (positional: mean magnitude of radian
error for all joints over trajectory duration (E[E[|θ − θdes|]]), velocity: mean magnitude of radians/second error for
all joints over trajectory duration (E[E[|θ̇ − θ̇des|]])) of inverse dynamics controllers (ID(..)) and baseline (PID)
controller.

154

Torque Chatter

Figure 57: Time derivative torque when using the inverse dynamics method (ID(ti)QP,µ) with means for miti-
gating torque chatter from indeterminate contact (red/dotted) vs. no such approach (black/solid).

Torque Smoothness

Controller E[|∆τ |] E[|τ |]

ID(ti)QP,µ 52.5718 0.2016

ID(ti)QP,∞ 245.5117 0.4239

ID(ti)LCP,µ 677.9693 0.8351

ID(ti)LCP,∞ 351.1803 0.4055

ID(ti−1) 974.3312 0.9918

ID(ti−2) 17528.0 2.7416

PID 100.1571 0.3413

Table 13: Average derivative torque magnitude (denoted E[|∆τ |]) and average torque magnitude (denoted E[|τ |])
for all controllers.

7.7.1 Smoothness of torque commands Figure 57 shows the effects of an indeterminate contact

model on torque smoothness. Derivative of torque commands are substantially smaller when in-

corporating a method of mitigating chatter in the inverse dynamics-derived joint torques. A five

order of magnitude reduction was observed in the maximum of the time derivative torque when

using a torque smoothing stage with the Drumwright-Shell contact model. Controller ID(ti)LCP,µ

is the only presented controller unable to mitigate torque chatter (seen in the “indeterminate” case

in Figure 57) and therefore produces the worst performance from the presented inverse dynamics

methods. Though it demonstrates successful behavior in simulation, this method would likely not

155

be suitable for use on a physical platform. The reference inverse dynamics controllers (ID(ti−1)

and ID(ti−2)) exhibit significant torque chatter also.

The “smoothness” of torque commands is measured as the mean magnitude of derivative torque

over time. The data presented in Table 13 indicates that the two phase QP-based inverse dynamics

controller (ID(ti)QP,µ) followed by the baseline controller (PID) are the most suitable for use on a

physical platform. Controller ID(ti)QP,µ uses the lowest torque to locomote while also mitigating

sudden changes in torque that may damage robotic hardware.

7.7.2 Verification of correctness of inverse dynamics The correctness of each inverse dynamics

approach is verified by comparing the contact predictions made by the controller against the re-

action forces generated by the simulation. The comparison considers only the `1-norm of normal

forces, though frictional forces are coupled to the normal forces (so ignoring the frictional forces is

not likely to skew the results). Each experimental controller’s contact force prediction is evaluated

for accuracy given sticky and slippery frictional properties on rigid and compliant surfaces.

The QP-based controllers are able to predict the contact normal force in simulation to a relative

error between 12–30%.7 The ID(ti)LCP,µ, ID(ti)LCP,∞ controllers demonstrated contact force pre-

diction between 1.16-1.94% relative error while predicting normal forces on a rigid surface (see

Table 14). The QP based controllers performed as well on a compliant surface as they did on the

rigid surfaces, while the performance of the ID(ti)LCP,µ, ID(ti)LCP,µ controllers was substantially

degraded on compliant surfaces.

The LCP-based inverse dynamics models (ID(ti)LCP,µ and ID(ti)LCP,∞) use a contact model that

matches that used by the simulator. Nevertheless no inverse dynamics predictions always match

the measurements provided by the simulator. Investigation determined that the slight differences

are due to () occasional inconsistency in the desired accelerations (the check described in Sec-

tion 7.3.5 is not used); () the approximation of the friction cone by a friction pyramid in the

experiments (the axes of the pyramid do not necessarily align between the simulation and the in-

7The QP-based inverse dynamics models use a contact model that differs from the model used within the simulator.
When the simulation uses the identical QP-based contact model, prediction exhibits approximately 1% relative error.

156

verse dynamics model); and () the regularization occasionally necessary to solve the LCP (inverse

dynamics might require regularization while the simulation might not, or vice versa).

Contact Force Prediction Error
Rigid, Low Friction

Controller absolute error relative error
ID(ti)QP,µ 3.8009 N 12.53%
ID(ti)QP,∞ 8.4567 N 22.26%
ID(ti)LCP,µ 0.9371 N 1.94%
ID(ti)LCP,∞ - -

Rigid, High Friction
Controller absolute error relative error
ID(ti)QP,µ 13.8457 N 27.48%
ID(ti)QP,∞ 12.4153 N 25.26%
ID(ti)LCP,µ 1.2768 N 1.55%
ID(ti)LCP,∞ 0.3572 N 1.16 %

Compliant, Low Friction
Controller absolute error relative error
ID(ti)QP,µ 7.8260 N 17.12%
ID(ti)QP,∞ - -
ID(ti)LCP,µ 4.6385 N 6.37%
ID(ti)LCP,∞ - -

Compliant, High Friction
Controller absolute error relative error
ID(ti)QP,µ 14.9225 N 30.86%
ID(ti)QP,∞ 15.1897 N 30.66%
ID(ti)LCP,µ 12.4896 N 24.00%
ID(ti)LCP,∞ - -

Table 14: Average contact force prediction error (summed normal forces) of inverse dynamics controllers vs. mea-
sured reaction forces from simulation. The quadruped exerts 47.0882 N of force against the ground when at rest under
standard gravity. Results marked with a “-” indicate that the quadruped was unable to complete the locomotion task
before falling.

7.7.3 Controller behavior The presented data supports the utilization of the QP-based inverse

dynamics model incorporating Coulomb friction, at least for purposes of control of existing phys-

ical hardware. Utilizing Coulomb friction in inverse dynamics was observed to lead to much more

stable locomotion control on various friction surfaces. The no-slip contact models proved to be

more prone to predicting excessive tangential forces and destabilizing the quadruped while not

offering much additional performance for trajectory tracking. Accordingly, subsequent results for

locomotion on a height map and controlling a fixed-base manipulator while grasping a box are

reported only for ID(ti)QP,µ which can be referred to more generally as “the inverse dynamics

controller with contact force prediction” or ID(ti).

Rigid non-planar surface: Figure 55 plots trajectory tracking performance of the locomoting quad-

ruped on rigid terrain with variable friction (ranging between low and high values of Coulomb fric-

tion for contacting materials as reported in literature). Three reference controllers are compared

against the two-stage inverse dynamics controller. During this experiment only the ideal sensor

controller ID(ti−1) consistently produced better positional tracking than the proposed controller

157

(ID(ti)). The experimental controller reduced tracking error below that of error-feedback control

alone by 19%.

Trajectory Tracking: Quadruped

Random friction, rigid heightmap

Figure 58: Joint trajectory tracking for a quadruped on a rigid heightmap with uniform random friction µ ∼
U(0.1, 1.5).

.

7.7.4 Center-of-mass tracking performance The ability of the controller to track the quadru-

ped’s center-of-mass over a path is a meta metric, as one expects this metric to be dependent upon

joint tracking accuracy. Figure 59 shows that both the PID and the ID(ti) methods are able to

track straight line paths fairly well. ID(ti−1), which yielded better joint position tracking, does not

track the center-of-mass as well. ID(ti−2) results in worse tracking with respect to both joint posi-

tion and center-of-mass position. This discrepancy might be attributable to an earlier observation

that ID(ti−1) and ID(ti−2) yield significantly larger joint velocity tracking errors than the PID and

ID(ti) controllers.

Fixed base manipulator grasping a box Trajectory tracking results for the fixed-base manipu-

lator are presented in Figure 60. Large errors in the PID and ID(ti−1) controllers were observed

while grasping the box, the sensed force inverse dynamics controller was adversely affected when

attempting to manipulate the sticky object, applying excessive forces while manipulating the box

with high friction (µ = ∞). Both the PID and ID(ti)QP,µ controllers dropped the box with low

friction (µ = 1.0) at about 1500 milliseconds. The trajectory error quickly converged to zero after

the inverse dynamics method dropped the grasped object, while the PID controller maintained a

158

Figure 59: Center-of-mass path in the horizontal plane between waypoints over 30 seconds. (left) high
friction; (right) low friction. The quadruped is commanded to follow straight line paths between points
{(0, 0), (0.25, 0), (0, 0.25), (0,−0.25), (−0.25, 0)}.

relatively high level of positional error. The sensed contact inverse dynamics controller ID(ti−1)

performed at the same accuracy as the predictive contact force inverse dynamics controller, and

managed to not drop the box over the course of the three second experiment.

Though the box slipped from the grasp of the inverse dynamics controlled manipulator, its track-

ing error did not increase substantially. This demonstrates a capability of the controller to direct the

robot through the task with intermittent contact transitions with heavy objects, while maintaining

accuracy in performing its trajectory-following task.

159

Trajectory Tracking: Manipulator

(a) High friction (µ =∞), rigid surface (b) Low friction (µ = 1.0), rigid surface

Figure 60: Joint trajectory tracking for a fixed base manipulator grasping a heavy box (6000 kg
m3) with friction:

(top) µ =∞— no-slip; and (bottom) µ = 1.

Figure 61: Inverse dynamics controller runtimes for increasing numbers of contacts (Quadruped with spherical
feet).

Running time experiments The computation time for each controller was measured during the

quadruped experiments; the number of simultaneous contacts at each foot-ground interface was

artificially increased to observe how each controller performed with a greater quantity to contacts

to process.8 Figure 61 shows that inverse dynamics method ID(ti)LCP,∞ scales linearly with ad-

ditional contacts. The fast pivoting algorithm (ID(ti)LCP,∞) can process in excess of 40 contacts

8Experiments were performed on a 2011 MACBOOK PRO Laptop with a 2.7 GHz Intel Core i7 CPU.

160

while maintaining below a 1 ms runtime—capable of 1000 Hz control rate. The experimental QP-

based controllers: ID(ti)QP,∞, ID(ti)one−stage
QP,µ , ID(ti)QP,µ supported a control rate of 1000 Hz to

about 30 total contacts when warm-starting the LCP solver with the previous solution. Control-

ler ID(ti)LCP,µ did not support warm-starting or the fast pivoting algorithm and was only able to

maintain around a 1 ms expected runtime for fewer than 4 contacts. The runtime for ID(ti)LCP,∞

was substantially higher than the QP-based model, despite a significantly reduced problem size,

for fewer than approximately 30 points of contact. This disparity is due to the high computational

cost of Lines 6 and 10 in Algorithm 3.

7.7.5 Discussion of inverse dynamics based control for legged locomotion The inverse dynam-

ics controller that predicts contact forces (ID(ti)QP,µ) performs well, at least in simulation, while

mitigating destructive torque chatter. Over all tests, the use of inverse dynamics control with pre-

dicted contact forces, i.e., ID(ti), was observed to more closely track a joint trajectory than the

alternatives—including inverse dynamics methods using sensed contact forces (even with perfect

sensing) and PID control. The inverse dynamics controller described in this work ID(ti) and the

baseline PID controller, were able to track center-of-mass position of quadrupeds with little de-

viation from the desired direction of motion, while the inverse dynamics controllers using sensed

contact forces performed substantially worse at this task (as seen in Section 7.7.4).

This chapter presented multiple, fast inverse dynamics methods—a method that assumes no

slip (extremely fast), a QP-based method without complementarity (very fast), that same method

with torque chattering mitigation (fast enough for real-time control loops at 1000Hz using current

computational hardware on typical quadrupedal robots), and an LCP-based method that enforces

complementarity (fast). It was demonstrated that a right inverse exists for the rigid contact model

with complementarity, and the asymptotic time complexity was analyzed for all inverse dynamics

methods. Each method is likely well suited to a particular application. For example, Section 7.7

found that the last of these methods yields accurate contact force predictions (and therefore better

joint trajectory tracking) for virtual robots simulated with the Stewart-Trinkle/Anitescu-Potra con-

tact models. Finally, the performance of each controller was assessed—running times, joint-space

161

trajectory tracking accuracy, and an indication of task execution capability (for legged locomotion

and manipulation)—under various contact modeling assumptions.

7.8 Conclusion

Inverse dynamics can be a highly effective method in multiple contexts including control of

robots and physically simulated characters and estimating muscle forces in biomechanics, but re-

quires knowledge of all external forces acting on the robot. Accurately perceiving external forces

applied to a robot (to enable accurate inverse dynamics control) requires filtering and thus signifi-

cant time delay. An alternative approach of predicting contact and actuator forces simultaneously

under the assumptions of rigid body dynamics, rigid contact, and friction was presented in this

chapter. The presented controllers (rated on performance in Appendix E) can form the basis of

an effective nonlinear control strategy in manipulator and legged robots by providing a robot with

both accurate positional tracking and active compliance. In biomechanics applications, inverse

dynamics control can approximately determine the net torques applied at anatomical joints that

correspond to an observed motion.

Results derived from simulation used ideal sensing and perfect torque control. The controllers

presented in this chapter permit the virtual robotic tests in Chapters 4 and 6 to exhibit the limit of

performance for each assessed robotic system.

162

8 Numerical stability for simulating robots controlled with error feedback

Roboticists often wish to simulate controlled systems rapidly while prototyping control schemes

and hardware designs. With sufficiently fast simulation, the robot virtual testing approach from

Chapter 4 could be executed online as in Section 4.3.3 and the robot prototyping process from

Chapter 6 could be completed in seconds rather than minutes. For example, when designing a new

gait generation and balance stabilization software for a simulated legged robot, the underactuated

nature of the robot limits the utility of strictly kinematic simulation (e.g., a robot will not exhibit

a fall when testing a bad balancing controller if not dynamically simulated). Dynamic simulation

of a virtual robot requires the inclusion of error feedback controllers, which then necessitate care-

ful tuning to balance dynamic performance with simulation stability. These additional steps make

debugging both more challenging (e.g., Did the robot fall because control was not sufficiently ac-

curate?) and slower than desirable—with the inclusion of control, inverse kinematics, and planning

code, simulations would run several times slower than real-time. In these cases, reducing the du-

ration of the “edit-compile-test” cycle might be more important than reducing numerical solution

error, which roboticists might do after obtaining some confidence in their control, planning, and

estimation software.

The work in this chapter flowed from a previous investigation (Zapolsky & Drumwright, 2015)

into a means of accelerating this process. That research found that exponential energy dissipation

can be used to increase simulation stability. However, it should be clear that excessive dissipation

will lead to artifacts (e.g., the robot acts as if it is moving through molasses); it is challenging to

balance numerical stability and physical fidelity with that approach. Experiments from Chapter 7

indicated that inverse dynamics controllers admitted larger integration steps than robots controlled

with error feedback control, which exhibited “stiff” behavior (see §8.1). This chapter presents two

alternative approaches to the work in Zapolsky & Drumwright 2015 that admit large integration

steps for various simulation robotic system; the presented approaches incorporate the following

into the simulator’s equations of motion for a robotic system: () prescribed motion constraints

163

such as a desired acceleration in an inverse dynamics control formulation (§8.4); and () transmis-

sion models for electromagnetic actuators (§8.5.3). Accordingly, this chapter tests the following

hypotheses:

Hypothesis A: Driving a multi-body system (e.g., a robot interacting through contact with one

or more rigid bodies) through inverse dynamics control can yield greater numerical stability than

tuned PD/PID control can offer.

Hypothesis B: Integrating the equations of motion for multi-body systems that accounts for both

contact and prescribed motion constraints yields greater numerical stability than simply feeding the

output from an inverse dynamics controller into the simulation’s integrator.

Hypothesis C: Incorporating transmission models for electromagnetic actuators into the equa-

tions of motion can increase numerical stability for simulations of robotic systems driven by

PD/PID control.

8.1 “Stiff” systems

An informal characterization of “stiff” dynamical systems is that their solution is smooth, yet ex-

plicit numerical approaches to solving initial value problems with them can require extremely small

integration steps to capture the desired behavior. Mechanical systems with springs and dampers

are the archetype of stiff systems, and error feedback controllers applied to mechanical systems

without springs and dampers act stiff as well. As a result, rapid prototyping of systems driven with

roboticists’ typical control techniques has proven challenging; simulations may run one or more

orders of magnitude more slowly than useful in such preliminary testing.

8.1.1 High mass ratios Multi-rigid body systems with high mass ratios between links can be

viewed as a type of stiff system (Anitescu & Potra, 2002). However, Featherstone found that

the condition number of the joint space inertia matrix increases quartically with the length of a

kinematic chain (Featherstone, 2004), which points to another possible source of system stiffness.

The robotic systems used in the experiments within this present work were modeled from CAD

data and do not contain significant disparities in masses, yet the inertia matrix condition numbers

164

(on the order of 108) are still problematic.

8.2 “Motors” in Open Dynamics Engine

The OPEN DYNAMICS ENGINE (ODE) manual describes “motors”, which implement the tech-

nique described in this present work, in the following way.

... [A]pplying forces directly [to joints] is often not a good approach and can lead to

severe stability problems if it is not done carefully.

Consider the case of applying a force to a body to achieve a desired velocity. To

calculate this force F you use information about the current velocity, something like

this:

F = k(desired speed− current speed) (147)

This has several problems. First, the parameter k must be tuned by hand. If it is too

low the body will take a long time to come up to speed. If it is too high the simulation

will become unstable. Second, even if k is chosen well the body will still take a few

time steps to come up to speed. Third, if any other “external” forces are being applied

to the body, the desired velocity may never even be reached (a more complicated force

equation would be needed, which would have extra parameters and its own problems).

Joint motors solve all these problems ... They can effectively see one time step into the

future to work out the correct force. This makes joint motors more computationally

expensive than computing the forces yourself, but they are much more robust and

stable, and far less time consuming to design with. This is especially true with larger

rigid body systems.

This text indicates that incorporating prescribed motions into the constraint equations is conve-

nient for the user, but it does not elaborate upon the difficulty of attaining fast simulation perfor-

mance even with well-tuned error feedback control. A general writeup of this technique is not

165

readily available to the robotics community, including its incorporation into the differential varia-

tional inequality formulation.

8.3 Kinematic simulations

The Institute for Human and Machine Cognition’s (IMHC) robotics group has adopted a similar

approach to that described in this chapter:9 desired joint and floating base accelerations are double

integrated to yield kinematically driven simulations of legged robots for rapid testing. This ap-

proach apparently works well for robots interacting with static environments, but has been tested

little on robotic manipulation tasks. The differences between IHMC’s approach and the inverse

dynamics and prescribed motion approaches described in this chapter follow: () inverse dynam-

ics and prescribed motion constraints retain floating base underactuation, allowing a legged robot

to trip, for example (IHMC’s approach would not capture this behavior); () Simulation with non-

interpenetration and torque constraints, among other constraints, precludes dynamically infeasi-

ble motions (to the first-order accuracy provided by the time stepping-based approach); and ()

IHMC’s approach does not have to constrain the motion by solving optimization or mathematical

programming problems, meaning that it will operate far faster.

8.4 Multi-body dynamics simulation with contact and inverse dynamics

This section presents the formulation of the time stepping multi-body dynamics problem with

contact and prescribed motion constraints. Joint range of motion limits and bilateral constraints

can be incorporated using straightforward extensions and are not discussed here to streamline the

presentation. This mixed linear complementarity problem formulation (Cottle et al., 1992) is used

in ODE and other software.
9Personal communication with Jerry Pratt.

166



M −PT −NT −FT 0

P 0 0 0 0

N 0 0 0 0

F 0 0 0 E

0 0 µ −ET 0





v+

τ

fN

fF

λ


+



−κ

−q̇des

0

0

0


=



0

w+
τ −w−τ

wN

wF

wλ


(148)

τ − τ− ≥ 0,wτ+ ≥ 0, (τ − τ−)
T
wτ+ = 0 (149)

τ+ − τ ≥ 0,wτ− ≥ 0, (τ+ − τ)
T
wτ− = 0 (150)

fN ≥ 0,wN ≥ 0,fN
TwN = 0 (151)

fF ≥ 0,wF ≥ 0,fF
TwF = 0 (152)

λ ≥ 0,wλ ≥ 0, λTwλ = 0 (153)

This problem formulation matches that in Chapter 7 almost exactly, and the reader is referred to

that work for greater insight into inverse dynamics subject to unilateral constraints. Briefly, there

are m generalized velocities (r of which are actuated), n points of contact, and k line segments

in each polygonal approximation to the friction cone at each point of contact; problem inputs are

M ∈ Rm×m (generalized inertia matrix), v ∈ Rm (generalized velocity vector), P ∈ Rr×m is a

binary selection matrix (the identity matrix if the controlled system is fully actuated), N ∈ Rn×m

(contact normals Jacobian matrix), F ∈ Rnk×m (contact tangents Jacobian matrix), µ ∈ Rn×n

(diagonal matrix of friction coefficients), E ∈ Rnk×n (binary matrix described in Anitescu & Potra

1997), q̇des ∈ Rr (desired actual joint velocities), and κ ≡Mv+ ∆tf (f ∈ Rm are all non-contact

and non-inverse dynamics forces on the system, ∆t).

167

(a) Quadruped (b) UR10

Figure 62: The mean absolute joint position error for the ID constraint, ID control, and PD control for the
quadruped and UR10 robots at various timesteps. A transparent bar indicates instability for the control at the
given timestep.

Key solution variables are v+ ∈ Rm (velocities at t+ ∆t, i.e., after integration), τ ∈ Rr (inverse

dynamics forces/torques), fN ∈ Rn (contact normal forces), fF ∈ Rnk (contact friction forces),

λ ∈ Rn (roughly equivalent to tangent contact velocities at t + ∆t, see Anitescu & Potra 1997).

Variables v+ and λ are unbounded, maximum actuator forces τ are constrained within the interval

[τ−, τ+], and normal fN and frictional fF contact force variables are constrained within the half-

closed interval of non-negative values [0,∞).

8.4.1 Drawback of the MLCP formulation The difference between the inverse dynamics control

algorithms presented in Chapter 7 and ODE’s approach is that τ is constrained to lie in [τ−, τ+]

in the latter, which means that the prescribed motion constraints might not be perfectly satisfied

(hence the presence of the term w+
τ −w−τ). These new equations and variables specify that if the

prescribed motion constraint can be satisfied exactly, then w+
τ − w−τ = 0. Otherwise, the joint

torque acts against the “slack” in the constraint. In other words, if the velocity at v+ for the ith joint

is greater than that desired, then the torque applied at that joint must lie at the lower limit; similarly,

the torque applied at that joint must lie at the upper limit if the velocity at v− for the ith joint is

lesser than that desired. This problem setup is reasonable in many but not all cases: it is possible

that applying a torque at an actuator’s lower torque limit could result in greater divergence from the

desired velocity at that joint than if no torques were applied (depending on other variable settings).

Neither does this problem setup appear to minimize any norm over the difference between desired

168

and resulting velocity.

8.4.2 Solvability of the MLCP formulation Chapter 7 will show that this problem can be solved

in expected polynomial time, including determining whether the desired velocities are consistent

with the other constraints, for τ− ≡ −∞, τ+ ≡ ∞ by first converting it to a “pure” linear com-

plementarity problem. For finite torque limits, the mixed linear complementarity problem cannot

be converted to a pure LCP, so an algorithm for solving mixed LCPs of this form must be ap-

plied. Lemke’s Algorithm can be modified to handle lower and upper variable limits (as described

in Sargent 1978) but is only provably able to solve MLCPs with positive semi-definite matrices.

The result is that the MLCP in Equations 148–153, which results in a copositive matrix (Stew-

art & Trinkle, 2000; Cottle et al., 1992), is not generally capable of being solved in polynomial

time using existing algorithms. In fact, when the desired velocities are inconsistent with the other

constraints, the MLCP is unsolvable even without torque limits. Accordingly, ODE uses reg-

ularization to solve a “nearby” MLCP. All problem constraints—including non-interpenetration,

Coulomb friction, joint limits, and inverse dynamics—will be violated by the degree of regulariza-

tion. The ramifications of such violations are generally unknown, though an experiment in §8.5.2

describes one outcome.

8.5 Experiments

Simulation experiments were conducted using the multi-rigid body dynamics library MOBY,

which uses pivoting solvers in place of the matrix splitting method solvers often employed to

speed simulations; these solvers do not provably converge (Lacoursière, 2003), so they are avoided

to simplify these experiments. The virtual robots used in the experiments were the UR10 arm

(sourced from an existing open source ROS package) and a floating base quadruped model de-

scribed Chapter 4. The UR10 arm possesses eight degrees-of-freedom (DoF), all controllable. The

quadruped model possesses 18 DoF, 12 of which are controllable. The UR10 was directed to fol-

low a sinusoidal motion at each joint, while the quadruped was commanded to follow a sinusoidal

pattern that resembled a trot. Each simulation was run for five seconds of virtual time.

169

Simulator Controller
motor torques

Constraint
solver

First-order
integrator:

x(t+Δt) ← x(t) +Δt v(t+Δt)

v(t+Δt)

x(t+Δt)
v(t)

M(t)contact,
joint
limit

constraints

x(t), v(t)

f(t)

x(t)

(a) Inverse dynamics forces fed into the simulator

Simulator Controller

desq̇(t+Δt)

Constraint
solver

First-order
integrator:

x(t+Δt) ← x(t) +Δt v(t+Δt)

v(t+Δt)

x(t+Δt)
v(t)

M(t)
contact,

joint
limit,

inverse
dynamics

constraints

x(t), v(t)

f(t)

x(t)

(b) Simulator computing the next velocity of the
multi-rigid body dynamics simulation while

accounting for the prescribed motion constraints

Figure 63: The difference between different prescribed motion approaches in simulation. x, v, M, and f are the
generalized positions, velocities, inertias, and forces respectively. The architecture on the right is faster, because
that on the left (invrse dynamics) solves essentially the same problem twice: once in the controller—the contact
forces must be accounted for to computer the inverse dynamics forces, but the former are then discarded—and
then again in the simulator.

When PD controllers were used in the following experiments, gains were tuned by a two-part

process consisting of manual tuning followed by nonlinear optimization. The optimization routine

minimized the `2-norm over the sum of all squared joint position errors. The gains were tuned in

this way to eliminate human bias to the greatest extent possible; otherwise, the experimenter could

subconsciously reduce gains to prioritize simulation stability over tracking accuracy.

Where applicable, the experiments in this section used algorithms for computing prescribed

motion under constraints that can account for torque limits—the ones described in this chapter,

not in Chapter 7—even though torque limits are set to ±∞ (i.e., unused). This decision permitted

the study of the computational properties of these methods without focusing on whether the virtual

robots would possess the actuator forces necessary to execute the designated tasks. Integration

steps were limited to a maximum of 0.1s. (O)(h) terms in any integrator imply very large errors

for h ≥ 1. The initial integration step size tested for each model was 0.001, a value that typically

produced stable simulations of each model. Step sizes were doubled until instability resulted—

at which point bisection search was conducted to identify an approximate maximum stable step

size—or the maximum value of 0.1s was reached.

170

Figure 64: The mean absolute position error of each joint on the UR10 arm as it executes a sinusoidal motion
on each joint at various timesteps. Time stepping with prescribed motion was used to achieve the maximum 0.1
timestep.

8.5.1 Testing the hypothesis that incorporating inverse dynamics control leads to more stable

simulations than error feedback control A PD-controlled UR10 arm served as one experimental

control for Hypothesis A. The maximum step size attained using this controller without the simu-

lation becoming unstable was 0.001. On the other hand, it was found that the UR10 arm could be

simulated stably without any controls applied (i.e., the robot falls under the influence of gravity)

with a step size of 0.1 (the maximum tested). This result indicates that the PD control introduces

stiffness into the differential equations; this result is not surprising given that () PD control can

be viewed as a virtual spring damper and () the mass-spring system is the canonical example

of a stiff ordinary differential equation (Hairer & Wanner, 1996). For the experimental variable,

171

the standard recursive Newton-Euler Algorithm (Featherstone, 1987) was used to generate inverse

dynamics torques.

Control method Max step Accuracy at max step Running time

PD control 0.001 3.80× 10−2 24.84s

Inverse dynamics (control) 0.004 9.05× 10−3 4.97s

Time stepping with prescribed motion (MLCP approach) — — —

Time stepping with prescribed motion (experimental solver) 0.10 5.10× 10−2 2.54s

Table 15: Mean of absolute error joint position tracking accuracy on the simulated quadrupedal robot

An experimental control in a second experiment used the quadrupedal robot model driven by PD

control. The non-complementarity-based inverse dynamics control approach described in Chap-

ter 7 was used as the experimental variable, which was necessary since one or more links of the

robot remained in contact with the environment. Tables 15 and 16 list the results from the experi-

ments with both robots: time stepping with prescribed motion allows the simulations to run 540%

and 66% faster, respectively.

In both experiments, the PD control yielded the smallest stable integration time steps. Figure 62a

shows that ID control was able to achieve a maximum stable timestep of 0.004 during the quadru-

ped experiment. PD control, on the other hand was only able to achieve a maximum timestep of

0.001. Figure 62b shows the ID control being able to achieve a timestep of 0.05 when the sinu-

soidal motion was run on the UR10 arm. PD control was still only able to achieve a maximum step

size of 0.001. The large increase of timestep with regards to the ID control from the quadruped

experiment to the UR10 experiment is likely due to the fact that the quadruped actually experiences

contact in its controlled motion, while the UR10 experiences no contact.

8.5.2 Testing the hypothesis that incorporating prescribed motion constraints leads to more

stable simulations than using inverse dynamics control Although it is possible that inverse dy-

namics torques fed into a simulator yield exactly the desired velocity at the next time step10, this

10desired velocity was used in place of desired acceleration for reasons described in Chapter 7. Popular open source
multi-rigid body dynamics libraries used for robotics (e.g., ODE, BULLET, DART) employ a first-order approxima-

172

result is not guaranteed (as the data from the previous section show). Hypothesis B arose from ob-

servations about the split nature of the control-simulation process (see Figure 63): it was speculated

that solving for the next velocity subject to all constraints would yield higher greater simulation

stability than feeding the inverse dynamics torques into the simulator’s constraint solver (i.e., its

mixed or pure linear complementarity problem solver).

Inverse dynamics controllers were employed as the experimental variables in the tests of Hypoth-

esis A as the experimental controls in the tests of Hypothesis B. For the variables in this experiment,

UR10 arm was tested and the quadrupedal robot using the MLCP-based inverse dynamics formu-

lation described in Section 8.4. The quadrupedal robot was also tested using an experimental,

optimization-based constraint solver. Only an outline of the technical approach will be outlined as

a key problem with the approach was identified during experimentation (to be described below).

The solver first computes a feasible point that satisfies both the contact normal velocity constraints

(Nv+ ≥ 0, from Equation 148) and the inverse dynamics velocity constraints (Pv+ − q̇des = 0).

Quadratic programming is then used to attempt to find frictional forces that maximally dissipate

kinetic energy without violating these constraints (in the spirit of Drumwright & Shell 2010).

Figure 64 depicts the speedup achieved from the use of time stepping with prescribed motion

constraints. At a timestep of 0.01, the use of prescribed motion constraints is able to achieve

around the same order of tracking accuracy as the PD control at a timestep of 0.001. Incorporat-

ing prescribed motion constraints into the UR10 simulation process executed in 9.11s at a 0.01

timestep, while the PD controlled arm required 357.02s at a 0.001 timestep. Time stepping with

prescribed motion constraints achieved a 39x speedup with essentially the same accuracy.

The results for the quadrupedal robot in Table 15 require explanation. The existing, MLCP-based

approach caused the simulation to become unstable at any step size. Regularizing the MLCP (via

Tikhonov regularization) did not help: such large regularization—it was necessary to add values on

the order of 1.0 to MLCP matrix to attain a solution while typical values lie in [10−12, 10−8]—that

the result was no longer a solution to a “nearby” problem. Note that applying the constraint solver

tion to velocity, thus supporting the choice.

173

to the individual problems of prescribed motion constraints without contact (by temporarily de-

activating gravitational forces) and contact without prescribed motion constraints (i.e., just using

PD control) works fine; problems only arise when the constraints are considered simultaneously.

The Dantzig MLCP solver (Lacoursière, 2007) was used, which is also used by ODE, to solve the

mixed linear complementarity problem.

On the other hand, the experimental approach outlined above was capable of generating an ac-

curate solution—and, as with the UR10 model—the simulation remained perfectly stable for large

step sizes. However, the presented results do not capture an important artifact: the quadruped ap-

peared to be skating as if on ice when it should have been trotting. Examination of the constraint

solver indicated that the solution method would have had to slightly violate the prescribed motion

constraints to incorporate frictional forces; the presented experimental approach is flawed and thus

illustrates what can happen when constraints may be violated arbitrarily (refer back to §8.4.2).

Nevertheless, Table 15 does hint at the possibility of a 226% speedup.

Control method Max step Accuracy at max step Running time

PD control + simulation 0.001 1.01× 10−2 357s

PD control (geared robot) + simulation 0.05 1.74× 10−1 24.6s

Inverse dynamics (control) + simulation 0.05 2.85× 10−2 6.51s

Time stepping with prescribed motion 0.10 1.15× 10−1 2.85s

Table 16: Mean of absolute error joint position tracking accuracy on the simulated UR10 manipulator

8.5.3 Testing hypothesis that incorporating transmission models increases the stability of

robots driven by error feedback control Claude Lacoursière suggested in personal communication

that adding gearing to a robot model might reduce the computational stiffness in the differential

equations. Accordingly, the PD controlled UR10 used to test Hypothesis A was compared to a PD

controlled UR10 with a virtual transmission modeled at each revolute joint; the gains were re-tuned

for this modified model. Gearing was not added to the quadrupedal model because significant ar-

chitectural modifications would be necessary in the robot’s locomotion software to accommodate

174

gearing. Table 16 and Figure 64 illustrate that the gearing does dramatically increase the maximum

stable step size, at a clear cost of tracking accuracy.

8.5.4 Discussion of Results This chapter has demonstrated the capability of inverse dynamics

and prescribed motion to dramatically speed multi-rigid body simulations with contact. Each pre-

scribed motion constraint (i.e., specification of a joint velocity) increases the size of the mixed LCP

(when accounting for force/torque limits) or pure LCP (without force/torque limits) to be solved;

in the latter case, a variable is added to a linear system to be solved independently of the LCP, as

described in Chapter 7.11

Aside from the wasted computational effort of solving the same problem twice—once for the

controller to compute inverse dynamics subject to contact and joint limit constraints and once

for the simulation’s solver to compute contact and joint limit forces subject to the control forces/-

torques, see Figure 63—this chapter has shown that incorporating the constraints into the constraint

solver is less likely to cause simulation instability. The stability decrease from feeding the inverse

dynamics forces/torques into the simulation might be explained by very slight discrepancies in

inputs; for example, the friction pyramids used for the Coulomb friction approximations between

the two constraint solvers can use different principal directions (which are selected arbitrarily).

The previous chapter, Chapter 7 demonstrates high, albeit imperfect tracking accuracy for inverse

dynamics of simulated robots, hinted at this phenomenon.

8.6 Conclusion

Although the computational demands to solve these problems are larger than that required for

error feedback controlled robots, the maximum stable integration step sizes are tens or hundreds of

times larger, thereby permitting much faster simulations. The complementarity-free contact model

described in Drumwright & Shell 2010 might provide a foundation for a computationally tractable

model that produces reasonably accurate contact forces and satisfies prescribed motion constraints

as well as force/torque limits allow. In the meantime, adding gearing to robots with electromagnetic

11this is exactly the same procedure as that required to account for a gear constraint; the computational demands are
identical.

175

actuators can provide the requisite simulation stability necessary for high frequency (realtime and

above) simulation, albeit with far lower tracking accuracy.

Advancements toward simultaneously improving the accuracy and stability (and correspond-

ingly simulator speed) such as those presented in this chapter might permit roboticists to simulate

controlled systems rapidly while prototyping control schemes and hardware designs. Rapid sim-

ulation will reduce the duration of the “edit-compile-test” cycle of the robot prototyping process

(Chapter 6) permitting roboticists to quickly edit and test a robot design in an interactive design

environment and then verify the robustness of the design through virtual testing (Chapter 4).

176

9 Quadrupedal Robot Locomotion

The software described in this chapter, PACER, implements the software described in this thesis

(e.g., inverse dynamics controllers, online particle traces) and basic functionality plugins for typical

robot operation (e.g., inverse kinematics, configuration space error-feedback control, operational

space error-feedback control). PACER was developed to control walking and running quadrupedal

robots in situ and features a reactive gait planning plugin that is the primary focus of this chapter.

Similar compilations of robotics planning and control tools have been made publicly available,

including the work of the Gepetto team METAPOD12 from LAAS CNRS and DRAKE13 from the

Robot Locomotion Group at MIT (Tedrake & the Drake Development Team, 2016). PACER is

a package developed for real-time perception, planning, and control of simulated and physical

robots. PACER provides:

A high level control interface in Section 9.1 that abstracts planning and control for legged robot

locomotion to high level commands (e.g., Dubin’s car, Reed-Shepp car, etc.).

A reactive gait planner in Section 9.2 that .

A plugin robot and controller architecture in Section 9.3 for seamless transition of control from

in situ to simulated robots (also used by Schaal 2009). It permits hot-swapping controllers while a

robot is active.

9.1 Locomotion control policy

The PACER library fills the role of “Robot Software” in Figure 65. More in-depth depictions of

the relationship between robotic software and a robot (real or simulated) were previously illustrated

in Figures 1 and 2; the “Controller” in these diagrams describes the most basic job of a control

policy: () receive a robot’s state {q(t), q̇(t)}; and () output commands for the robot u(t) (e.g.,

actuator torques).

12available at https://github.com/laas/metapod
13available at https://github.com/RobotLocomotion/drake

177

(a) Robot operating in situ

(b) Robot operating in sim

Figure 65: A flow chart depicting how PACER (robot software) interacts with (a) a robot in situ or (b) a
time-stepping simulator. The software receives a robot’s state as input and outputs actuator torques.

Input forces u(t) are determined by a control policy π, which is dependent on the current state

of the system {q(t), q̇(t)}, time t, and the interval until the next controller call ∆t, followed by a

list of policy-specific parameters (e.g., control policy parameters p and desired spatial velocity of

the robot base ẋbase
des in Equation).

u(t) = π (q(t), q̇(t), t,∆t, ...) (154)

The time-step ∆t is necessary to consider when incorporating inverse dynamics control into a

control policy that is formulated in the continuous domain. The inverse dynamics controllers used

in this dissertation are formulated with respect to a first order approximation of the dynamics of the

robotic system; they must know over what interval of time to evaluate input forces to the robotic

system to reach the desired velocity input to the controller (refer to Chapter 7).

u(t) = πlocomotion(q(t), q̇(t), t,∆t,p, ẋbase
des) (155)

Algorithm 6 describes the evaluation of Equation 155 in PACER for a locomoting quadrupedal

robot.

178

Algorithm 6 {u(t)} = πlocomotion(q(t), q̇(t), t,∆t, q̇(t),p, ẋbase
des) is an algorithm of the control

policy used to control many of the quadrupedal robots in this thesis.

1: {x(t), ẋ(t)} ← FORWARDKINEMATICS(q(t), q̇(t))
2: mode← {STANCE, STANCE, STANCE, STANCE} . modei determines the behavior of each foot i
3: for each foot ∈ {foot{left,front}, foot{right,front}, foot{left,hind}, foot{right,hind}} do
4: {xfoot

des , ẋ
foot
des ,mode} = GAITPLANNER(ẋ{base,des}, q,mode,p, foot, t) . see Algorithm 7

5: {qdes(t+ ∆t), q̇des(t+ ∆t)} ← INVERSEKINEMATICS(q(t),xdes(t+ ∆t), ẋdes(t+ ∆t))
6: {u(t)} ← INVERSEDYNAMICS(q(t), q̇(t), q̇des(t+ ∆t),∆t)
7: return {u(t)}

9.2 Gait Planning

This section describes the reactive planning system for online, dynamic locomotion trajectory

generation and tracking. The quadrupedal robots in this thesis follow trajectories generated by an

open source legged locomotion software PACER14.

A gait is the pattern of movement that the limbs of an animal (or a robot) follow during locomo-

tion. PACER implements a simple gait planner that generates desired motions for the feet of the

robot from a set of gait or, more generally, control policy parameters, and a desired motion for the

body (i.e., base, torso, root link) of the robot.

The commands generated by the planner are defined in operational space. The motion of a robot

in stance phase is defined by a small set of “gait parameters” (see §9.2.1); all that determines the

robot’s motion plan during locomotion are these parameters, the mode of each foot (past states

of Algorithm 7 in Section 9.2.2), the base velocity command (§9.4), and the robot’s state and

kinematics. Whether a foot is in swing or stance phase is determined by a gait timing pattern;

how a gait timing is generated is described in Section 9.2.3. Stance foot behavior (§9.2.4) is

determined by only the current base velocity command (i.e., the behavior maintains no history)

and is calculated at each controller iteration. Swing phase behavior (§9.2.5) is calculated as a

velocity-clamped cubic spline at the start of each swing phase and is re-planned during that swing

phase if the robot’s commanded velocity changes. The following sections describe how the gait

planner in this section fits into the control policy for a locomoting robot (§9.3) and describes how

14PACER is available at http://github.com/PositronicsLab/Pacer

179

http://github.com/PositronicsLab/Pacer

the base velocity commands are generated (§9.4).

Figure 66: Visualization of the gait parameters for a quadrupedal gait.

9.2.1 Gait parameters The gait for a quadrupedal robot is defined in PACER using a short list

of parameters (see Table 17). Among quadrupedal mammals, there exists a relationship between

some morphological traits and parameters of an optimal gait; these relationships are discussed in

(Herr et al., 2002). Herr et al. (2002) describes that all of the gait parameters need not be explicitly

defined, rather, many of them may be generated automatically with only the desired velocity of the

robot left as input into a gait planner.

180

Gait Parameters

Parameter description

desired velocity (max between waypoints) ẋ{base,des} = {forward, strafe,−,−,−, rotation}

base linear offset (absolute or relative to max reach) { x-offset, y-offset, height }

base orientation offset (rad) {roll, pitch, yaw}

step height (cm) the height of the two via points in the step trajectory

stance length (absolute or relative to base width) the average distance between front and back stance feet

stance width (absolute or relative to base width) the average distance between left and right stance feet

gait duration (sec) interval of time where one gait cycle is performed

liftoff timing (% gait duration) Point in the gait duration at which a stance phase ends of

a certain foot and a flight phase begins for a duration of

100%−duty factori {left front, right front, left hind, right

hind}

duty factor (% gait duration) proportion of gait duration that each foot spends in stance

phase over a full gait cycle. {left front, right front, left

hind, right hind}

Table 17: Gait parameters for input into the locomotion system.

9.2.2 Gait planning algorithm The gait planner (illustrated in Figure 67 and described in Algo-

rithm 7) takes as input desired planar base velocity (ẋ{base,des}) and outputs the desired position and

velocity of each foot to drive the robot across the environment at the desired velocity. The planner

outputs a trajectory for each foot in the local frame of the robot. After end effector trajectories have

been planned, joint trajectories are determined at each controller cycle using inverse kinematics.

181

Figure 67: Locomotion planner flowchart depicting the mode switches for a single foot over the course of the
gait. Double-outlined states are planned, while single-outlined states are recovery behaviors.

During a stance phase a robot’s foot will drive the robot forward until the next lift-off phase.

The movement of the stance feet during locomotion must satisfy its velocity command using a

specified gait; this means that foot placement must be carefully selected so that the stance foot will

not leave the reachable region for that foot during the duration of a stance phase. Figure 67 adds

two recovery phases to the standard stance and swing phase called “support” and “reach” that are

active after a phase is supposed to end, but before it is safe to begin the next phase. The support

phase continues after the end of a stance phase; it checks to make sure that the robot has not

diverged from plan (i.e., a touchdown was planned but no contact was detected) before permitting

a continuation of the gait. The reach step is a continuation of the swing phase; it activates as a

recovery action of a touchdown was planned but no contact was detected; it commands the robot

to push the stance foot that does not detect contact down toward where the ground should be. If

a foot encounters the edge of the reachable space of the robot, an additional recovery action is

triggered—starting a new swing phase to search for a new foothold.

182

Algorithm 7 {xfoot
des , ẋ

foot
des ,modefoot} = GAITPLANNER(ẋbase

des , q,mode,p, foot, t) is a planning
algorithm for determining the desired position xfoot

des and velocity ẋfoot
des of each foot with respect

to the robot’s base link frame (i.e., when the robot is standing: the x-axis is forward, the y-axis
is left, and the z-axis is up). Figure 67 depicts this algorithm as a flow chart. The algorithm
should always initialize with parameter mode = {STANCE, STANCE, STANCE, STANCE}. Time t
must increase monotonically for this algorithm to function.

1: {xfoot,−} ← FORWARDKINEMATICS(q,−)
2: progress← t mod pgait period . current point in gait cycle
3: if progress ∈ pstance phase interval(foot) then . if in planned stance phase
4: touchdown← (modefoot 6= STANCE) . if planned stance phase just began, activate touchdown
5: else
6: liftoff ← (modefoot 6= SWING) . if planned stance phase just ended, activate liftoff
7: if modefoot ∈ {STANCE, REACH, SUPPORT} then . “stance phase” behavior (§9.2.4)
8: xfoot

des = xfoot

9: J{foot,base} ← JACOBIANfoot(q) . Generate foot Jacobian (see §9.2.4)
10: ẋfoot

des ← −J{foot,base}ẋbasedes . Push robot base forward at goal velocity (see §9.2.4)
11: if modefoot = REACH then . reach recovery phase
12: if CONTACTSENSOR(foot) then . Foot sensors detect sufficient force to support a stance phase
13: modefoot ← STANCE

14: else
15: ẋfoot

des ← ẋfoot
des − ||ẋfoot

des ||ẑ . move foot downward in operational space
16: if liftoff then . planned end of stance phase
17: modefoot ← SUPPORT . wait for sufficient support to begin a swing phase with foot
18: tSUPPORT ← t . record when support phase began
19: if modefoot = SUPPORT then . fail-safe stance phase
20: if ∀feet, mode 6= REACH then . the robot is not in a recovery mode with another foot
21: modefoot ← SWING . start a flight phase to next foothold
22: else if ||xfoot|| > max reach then . The foot has pushed beyond maximum reach (overreach)
23: modefoot ← SWING . forcibly proceed to swing phase
24: if modefoot = SWING then . “swing phase” behavior (§9.2.5)
25: if liftoff then . swing phase has just begun
26: tSWING ← t . record when swing phase began
27: ttouchdown ← tSWING + pgait period(1− pduty factor(foot)) . get time of planned touchdown
28: ttouchdown ← ttouchdown − (tSWING − tSUPPORT) . reduce swing phase by duration of support phase
29: tswing duration ← ttouchdown − t . duration over which swing spline will be valid
30: Tfoot ← SWINGPLAN(ẋbasedes ,xfoot, ẋfoot, q, tswing duration) . calculate swing spline (see Figure 71)
31: {xfoot

des , ẋ
foot
des } ← Tfoot(t− tSWING) . evaluate spline to get swing foot behavior

32: if touchdown then . planned end of swing phase
33: modefoot ← REACH . begin reach recovery phase
34: return {xfoot

des , ẋ
foot
des }

9.2.3 Gait Timing Gait timing involves choosing when each foot is supporting the robot and

when it is moving to a new foothold. Gaits can be challenging to generate from a reduced set of

parameters because the parameters must coordinated in such a way that the resulting motion does

not simply topple the robot. The locomotion system described in this chapter affects stability by

183

carefully adjusting when touchdown and liftoff occur. The only systems stabilizing the robot are

the reactive “support” and “reach” phases of the planner and the implicit stabilizing effect that a

gait timing imparts to a robot’s dynamics. Gait parameterization is thus a crucial aspect to ensuring

that such failing or unstable configurations are rare in the parameter space of a gait. The following

terms are used to describe the various timed actions of a gait planning system:

stance phase The interval of time where a foot is planned to be in contact with the ground (foot

applies force to move the robot)

swing phase The interval of time where a foot is planned to not be in contact with the ground (to

position the foot for the next stance phase)

flight phase An interval of time where no feet are planned to be in contact with the ground (no

feet in stance phase, all feet in swing phase). A gait that exhibits a flight phase is typically

referred to as a “run” or a “flighted gait”; A gait that does not exhibit a flight phase is typically

referred to as a “walk”.

duty-factor the duration of the stance phase for a foot as a proportion of the gait period duration

touchdown The moment when a foot is planned to make contact with the ground and transition

from swing to stance phase

liftoff The moment when a foot is planned to break contact with the ground and transition from

stance to swing phase

gait pattern A data structure combining the liftoff and touchdown times for all feet of the robot.

gait period The duration of the interval of time over which a cyclic gait pattern is repeated.

184

(a) Pre-step (b) During step

Figure 68: two frames of a straight-forward step using the PACER locomotion system. The left image depicts
all feet in stance phase and the right image depicts the left front an right hind feet in swing phase. Debugging
visualization information in the images include contact normal, contact force vector, swing foot trajectories,
base link frame, global frame, expected location of the robot at touchdown, and each foot “origin” (i.e., neigh-
borhood around which a foot is expected to operate).

In PACER only a single parameter per foot of the robot (“touchdown”) must be adjusted in order

to produce a new gait for the robot. A few typical touchdown and liftoff timings (gait patterns) are

depicted in Figure 69.

Figure 69: Plots of timings for various quadrupedal gaits. Darkened bars indicate a stance phase and empty
regions indicate a swing phase. The percent values on the horizontal axis refer to the progress in the gait
through the total duration of the gait period. Converting these plots to gait parameter values in Table 17: The
“walking trot” has touchdown times {50%, 0%, 0%, 50%}, duty factors for all feet equal to 60%, and liftoff times
{10%, 60%, 60%, 10%}.

185

Gait timings are typically copied from nature after careful observation of quadrupedal animals in

motion. The search space for new gaits exhibits a complex interdependence between gait timing,

desired speed of locomotion, and the morphology of the locomoting system; rather than discover

new, functional gait timings, the typical approach is to select one of the many known gaits and

then make small adjustments to it in order to fit a desired task. For example, slow movement

(walk) might typically be paired with a lateral sequence walk, amble, or walking trot while a faster

movement might require a running trot, pace, or gallop.

9.2.4 Stance Phase A robot propels itself forward during the stance phase of its gait (see Sec-

tion 9.2.4). Forward propulsion is achieved in legged locomotion by the feet pushing back against

the ground to push the robot forward.

The recovery actions in Figure 67 are mostly applicable to walking gaits, as running gaits are too

dynamic for large, online adjustments to the timing and kinematic properties of a gait while also

ensuring stability. Instead, running gaits can use contact forces at the feet to adjust the momentum

of the robot over the duration of a stance phase, toward promoting stability. Figure 70 depicts the

use of a stance phase to propel a robot at a constant horizontal velocity.

(a) (b) (c)

Figure 70: Catch points: foot placement determines the moment a foothold exerts on the majority of the mass
of a robot. The selection of a foothold determines the profile of the ground reaction forces over the duration
of a support phase. A foothold is selected that is centered about the midpoint in the stance phase, leading
to a symmetric force profile in the robot’s sagittal plane. Images are copied from Raibert (1986), Chapter 2:
Hopping on One Leg in a Plane

The stance foot crosses under the point of support of the limb at about mid-stride in order to have

186

equal loading and unloading phases of the stance phase to maintain a constant speed. Figures 70a

and 70b show how this applies to monopods; the locomotion system has applied this principle to

each leg of the robot (Figure 70c).

Definition of the foot-base Jacobian In order to determine what direction a foot should push

against the environment in order to induce a desired motion of the base, a foot-base Jacobian

is calculated by finite differencing or is analytically derived from the robot’s kinematics. The

foot-base Jacobian J{foot,base} is a block of the Jacobian J{operational,configuration} relating the effect

that changes to a robot’s generalized coordinates have on the coordinates of a robot’s links in

operational space; this matrix is the partial derivative ∂f
∂q

of the function x = f(q), which relates

the position x of some point on one of the robot’s links (in this case, the point of contact between

the foot and the ground) to the robot’s generalized coordinates in configuration space q. The

transpose of J{operational,configuration} is also known to map forces applied to a point on a robot’s

link to generalized forces in configuration space. The matrix used by the gait planner J{foot,base} ∈

R3×6 is the block of J{operational,configuration} ∈ R(3·nc)×(nq+6) which maps from the generalized

coordinates of the robot’s base in configuration space (6d) to the position of the point on a stance

foot where it contacts the environment (3d), where nc is the number of stance feet and nq is the

number of actuated joints on the robot.

The gait planner utilizes the relationship between the velocity of the point on a stance foot where

it contacts the environment and the planned velocity of the robot base to determine the planned

velocity of a foot; matrix J{foot,base} transforms between these two velocities

ẋfoot
des ← −J{foot,base}ẋ{base,des}

The value in Equation 9.2.4 is negated because the foot is being driven to push the robot base at

the desired motion ẋ{base,des}. The value J{foot,base}ẋ{base,des} would evaluate to: the velocity of a

point on the foot link if the robot’s joints were frozen in place and the base were moving at the

desired velocity; instead, the transformation required to command the robot to walk forward is the

187

opposite of this: the joints of the robot are moving to push the robot base into motion.

9.2.5 Swing Phase The purpose of the swing phase is to reposition the foot to a foothold that

will be within reach of the robot and provide balancing support for the robot over the course of the

next stance phase. The foot follows a planned path through the air over the duration of the stance

phase in order to reach a foothold at touchdown, the moment that the swing phase is planned to end

(calculation of the touchdown position is shown in Section 9.2.5). The planned path for a swing

foot is generated by calculating a four knot (i.e., control point, via point) cubic spline with velocity

constraints at each end point. The spline is then evaluated with respect to the time since the swing

phase started over the course of the step. Figure 71 illustrates how each of the four swing phase

control points are determined.

1. The first “liftoff” control point is set to the current foot velocity at the current foot position

2. The second via point is set to step height above the liftoff position

3. The third via point is set to step height above the touchdown position with an additional

horizontal displacement equal to overshoot × (xtouchdown − xliftoff) beyond the touchdown

location.

4. The fourth and last “touchdown” control point is set to the touchdown foot position and the

desired foot velocity at the time of touchdown (see §9.2.5).

188

Figure 71: Visualization of gait parameters of a quadrupedal gait. This this diagram labels a projection of the
same gait planning system in swing phase onto a quadruped’s sagittal plane.

Touchdown foot placement The quarupedal robot affects a monopod locomotion strategy with

each leg by predicting where the base of the robot will be both at the moment of touch down and

at the middle of its next stance phase for each foot. The future states of the robot are represented

as a first-order differential equation:

ẋbase(t) = f(t, y(t)), y(t0) = xbase(t0)

This equation is integrated over interval [t0, tf] to calculate the position of the robot base at time

tf (x̂base(tf) = y(tf)). Following from the strategy used for straight-line motion, turning is trivial

to implement (see Figure 72b). Foot placement is only based upon the predicted location of the

base, which follows a planar process model. The difference between the robot’s state at its next

touchdown and half-way through the next stance phase determines where the robot will place its

foot. Foot placements are generated with the intention of having each of the robot’s shoulders

189

directly above its foot at the mid-point of that foot’s stance phase.

(a) Foot placement during forward walking (b) Foot placement during turning

Figure 72: The robot predicts foot placement based on where it will be during its next stance phase if controlled
at a constant velocity ẋ{base,des}. This strategy is used to determine the touchdown point of each swing phase
(Tfoot,n , where n = |T|)

Figure 72 demonstrates both of the mentioned mechanics at work. () The touchdown point of

the front left foot is predicted so that the robot’s shoulder will pass over it mid-way through the

next stance phase. () The robot’s left hind hip dips during loading and then rises during unloading

as the robot progresses through the stance phase. This induced vertical oscillation from the motion

of () allows the robot to transfer its weight between stance phases by reducing the robot-ground

reaction forces during unloading—due to the upward motion of the robot.

9.3 Plugin-based robot interface and control architecture

PACER maintains and updates an internal model of the robot being controlled; it parses the in-

ertial and dynamic properties from standard robot description file types (SDF, URDF) and uses

this model to generate kinematic (Jacobian), and dynamic (generalized inertia tensor, momentum)

data independently of any particular simulator’s kinematics and dynamics representations. This

independence from a particular simulator allows for ready communication between groups that

conduct research within different simulators. The locomotion system has been demonstrated con-

trolling real and simulated robots with no alteration to the underlying controllers (see Figure 73).

190

Figure 73: The quadruped robot R. Links (left), in MOBY (center), and GAZEBO (right).

9.3.1 Modular planning and control framework The control architecture of PACER adopts a

plugin framework; such a framework is also used to manage robot controllers in GAZEBO (Koenig

& Howard, 2004). PACER modularizes each controller and planner into its own encapsulated

unit. Though some systems may bridge planning and control into a single system (kinodynamic

planning), the active systems on a robot often are segmented into distinct, sequential categories:

perception, planning, and control. However, one may use further categorizations, including global

and local planning, reactive control, stabilization, balance, inverse kinematics, inverse dynamics

control, and error feedback control. PACER ensures that sequential processes (e.g., footstep plan-

ning then inverse kinematics) are run in order, while allowing non-interdependent processes—such

as global path planning—to run in parallel. Plugin scheduling is further extended by adding a real-

time factor to each control module, permitting a controller to run for n iterations of the real time

system before it is queried for a control input to the robot. This layered architecture is illustrated

in Figure 74.

191

Figure 74: A flow-chart of planning an control data as it passes through the standard set of PACER plugins
used by a quadrupedal robot.

9.4 Driving and Navigation

PACER provides a simple front end to semi-autonomous control in locomotion by abstracting

legged robot footstep planning and control to more simplistic commands (e.g., planar robot degrees

of freedom (x, y, θ), the base position differential of the robot (in SE(2)). Using this abstraction,

an operator can drive a robot like a car, or have the robot base follow a planned trajectory between

waypoints in the environment.

9.4.1 Steering There are two types of movement typical robot’s might use while “driving”, holo-

nomic (planar) movement, and a specific class of non-holonomic movement that corresponds to

dual-axle steering car such as a Dubin’s car model (see Figure 75). An operator will likely be famil-

iar with both models, each pertaining to a different task; a sprinting robot might only make small

steering adjustments but avoid side-stepping (non-holonomic); a slow moving robot might strafe

sideways for a small position adjustment rather than turn, more forward, and turn back. While

holonomic planar movement is extremely useful for problems that are particularly hard for typical

192

car-like controls, such as parallel parking and turning in place, it is useful to keep a locomoting

robot facing forward. When a robot’s forward axis is tangent to the path it is following sensory

equipment on the head might be better oriented in the direction of movement. Forward-facing mo-

tion also helps keep the body of h robot oriented to a locally-defined “forward” frame, which might

simplify stabilization (e.g., roll and pitch are can be readily identified in this context). Enabling

control functionality using both of these potential steering behaviors would be beneficial, as each

has a useful application in legged locomotion.

Figure 75: holonomic (planar) movement [left], and non-holonomic (driving) movement [right].

9.4.2 Gamepad input PACER condenses complete control over most aspects of quadruped lo-

comotion into a gamepad form-factor; the gamepad input consists of fourteen buttons and four

continuous axes for fine-tuned control adjustments (see Figure 76).

193

Figure 76: A view of the basic gamepad controls for semi-autonomous quadrupedal locomotion.

The gamepad input layout in Figures 76 and 77 is an attempt at giving an operator full control

over which gaits are used by the robot and how it moves through the world. The operator is

prevented from producing failing gaits by having limited control over touchdown timing; there is

a time gap between when a new gait is selected and when it is transitioned to by the robot (to

perform a sanity check on the new gait an when to make the transition). Section 4.3.3 describes

how such a sanity check is implemented through virtual falsification. These features achieve a

semi-autonomous sharing of control between decisions made by the operator and reasoning made

about the stability of a new control parameterization made by simulation.

194

Figure 77: A view of the gamepad controls and mode toggles for advanced gait settings; these enable control
over all relevant aspects of quadrupedal locomotion.

9.5 Conclusion

Integrating robotic systems for planning, estimation, and control is a widely interdisciplinary

task, drawing on the expertise of hardware engineers, software developers, and control theorists

(among others). Researchers often have to collaborate across multiple institutions to create fully

functional robots. The ease with which roboticists can communicate by passing techniques and

software between research groups is a significant determining factor for how quickly robot sys-

tems can be prototyped, built, and controlled. Cooperation and standardization help to assess one’s

195

work with respect to the state-of-the-art, and permit effective adoption and development upon ex-

isting research in the field. PACER provides a code base for locomotion. It implements a modular

control architecture that enables researchers to contribute directly to the state of the art in locomo-

tion, while permitting them to easily appraise, modify, and adopt existing software. PACER was

developed with the aforementioned goals in mind.

196

10 Discussion, Conclusions, and Future Work

The convergence toward an effective robot through trial and error, simulated or in situ, is tedious

and time consuming. The reward for following this approach is that it gives the few roboticists

closely involved a repertoire of experiential knowledge that they can use to develop better systems

in the future. This thesis described an extension to typical methods of robot prototyping and testing

that seeks to bypass some of the physical experimentation currently used when developing a robot

that performs well in situ. My aim has been to greatly accelerate the design-build-test cycle of

research in robotics by providing a readily usable virtual testing and design framework for robot

hardware and software. Toward that goal, this dissertation presented methods for automating and

or simplifying a roboticist’s typical workflow (i.e., designing, testing, controlling, and debugging

robots). This dissertation described tools for fast, automated testing and interactive robot design

that will give new roboticists a lower barrier to entry (in both dollars and time) for developing new

robotic systems and will provide experienced roboticists with focused computer-aided engineering

tools to help optimize workflows.

197

Appendix

Appendix A: Generalized contact wrenches

A contact wrench applied to a rigid body will take the form:

q ≡

 q̂

r × q̂

 (156)

where q̂ is a vector in R3 and r is the vector from the center of mass of the rigid body to the

point of contact (which is denoted p). For a multi-rigid body defined in m minimal coordinates, a

generalized contact wrench Q ∈ Rm for single point of contact p would take the form:

Q = JTq (157)

where J ∈ R6×m is the manipulator Jacobian (see, e.g., Sciavicco & Siciliano, 2000) computed

with respect to p.

Appendix B: The Principal Pivoting Method for solving LCPs

The Principal Pivot Method I (Cottle, 1968; Murty, 1988) (PPM), which solves LCPs with P -

matrices (complex square matrices with fully non-negative principal minors (Murty, 1988) that

includes positive semi-definite matrices as a proper subset). The resulting algorithm limits the size

of matrix solves and multiplications.

The PPM uses sets α, α, β, and β for LCP variables z and w. The first two sets correspond

to the z variables while the latter two correspond to the w variables. The sets have the following

properties for an LCP of order n:

• α ∪ α = {1, . . . , n}

• α ∩ α = ∅

• β ∪ β = {1, . . . , n}

198

• β ∩ β = ∅

Of a pair of LCP variables, (zi, wi), index i will either be in α and β or β and α. If an index

belongs to α or β, the variable is a basic variable; otherwise, it is a non-basic variable. Using this

set, partition the LCP matrices and vectors as shown below:

wβ

wβ

 =

Aβα Aβα

Aβα Aβα


zα
zα

+

qβ
qβ


Isolating the basic and non-basic variables on different sides yields:

zα
wβ

 =

 −AβαAβα A−1βα

Aβα −AβαA
−1
βαAβα AβαA

−1
βα


zα
wβ

+ . . .

 −A−1βαqβ

−AβαA
−1
βαqβ + qβ


If the values of the basic variables are set to zero, then solving for the values of the non-basic

variables zα and wβ entails only computing the vector (repeated from above):

 −A−1βαqβ

−AβαA
−1
βαqβ + qβ

 (158)

PPM I operates in the following manner: () Find an index i of a basic variable xi (where xi

is either wi or zi, depending which of the two is basic) such that xi < 0; () swap the variables

between basic and non-basic sets for index i (e.g., if wi is basic and zi is non-basic, make wi non-

basic and zi basic); () determine new values of z andw; () repeat () –() until no basic variable

has a negative value.

Appendix C: Proof that removing linearly dependent equality constraints from the MLCP

in Section 7.3.4 does not alter the MLCP solution

199

Theorem 10.1 The solution to the MLCP in Equations 74 and 75 without linearly dependent

equality constraints removed from A is identical to the solution to the MLCP with reduced A

matrix and unconstrained variables set to zero that correspond to the linearly dependent equality

constraints.

Proof Assume that U is a matrix with rows consisting of a set of linearly independent vectors

{u1, . . . ,un}, where n ∈ N. Each of these vectors comes from a row of P, S, or T. Assume W

is a matrix with rows consisting of vectors {w1, . . . ,wm}, each of which is a linear combination

of the rows of U, for m ∈ N. U and W are related in the following way: Z ·U = W, for some

matrix Z. The MLCP from Equations 74 and 75 can then be rewritten as:



M −UT −(ZU)T −NT

U 0 0 0

ZU 0 0 0

N 0 0 0





+
v

fU

0

fN


+



κ

0

0
−
φ

∆t


=



0

0

0

wN


(159)

fN ≥ 0,wN ≥ 0,fT
NwN = 0 (160)

where fU are unconstrained variables that correspond to the linearly independent equality con-

straints. Note that the value of 0 is assigned to the variables corresponding to the linearly depen-

dent equality constraints. Since values for +
v, fU , and fN that satisfy the equations above require

U
+
v = 0, the constraint ZU

+
v = 0 is automatically satisfied.

Appendix D: Proof that no more than m positive force magnitudes need be applied along

contact normals to a m degree of freedom multi-body to solve contact model constraints

This proof will use the matrix of generalized contact wrenches, N ∈ Rn×m (introduced in Sec-

tion 7.3.1), and M ∈ Rm×m, the generalized inertia matrix for the multi-body. zI is the vector of

contact force magnitudes and consists of strictly positive values.

Assume the rows of N are permuted and partitioned into r linearly independent and n−r linearly

200

dependent rows, denoted by indices I and D, respectively, as follows:

N =

NI

ND

 (161)

Then the LCP vectors q = Nv, z ∈ Rn, and w ∈ Rn and LCP matrix Q = NM−1NT can be

partitioned as follows: QII QID

QDI QDD


zI
zD

+

qI
qD

 =

wI

wD

 (162)

Given some matrix γ ∈ R(n−r)×r, it is the case that ND = γNI , and therefore that QDI =

γNIM
−1NI

T, QID = NIM
−1NI

TγT (by symmetry),

QDD = γNIM
−1NI

TγT, and qD = γNIv.

Lemma 10.2 Since rank(NM) ≤ min (rank(N), rank(M)), the number of positive components

of zI can not be greater than rank(N).

Proof The columns of NM have N multiplied by each column of M, i.e., NM =

[
Nm1 Nm2 . . . Nmm

]
.

Columns in M that are linearly dependent will thus produce columns in NM that are linearly de-

pendent (with precisely the same coefficients). Thus, rank(NM) ≤ rank(M). Applying the same

argument to the transposes produces rank(NM) ≤ rank(N), thereby proving the claim.

The following shows that no more positive force magnitudes are necessary to solve the LCP in the

case that the number of positive components of zI is equal to the rank of N.

Theorem 10.3 If (zI = a,wI = 0) is a solution to the LCP (qI ,QII), then (

[
zI

T = aT zD
T = 0T

]T
,w =

0) is a solution to the LCP (q,Q).

Proof For (

[
zI

T = aT zD
T = 0T

]T
,w = 0) to be a solution to the LCP (q,Q), six conditions

must be satisfied:

• zI ≥ 0

• wI ≥ 0

201

• zITwI = 0

• zD ≥ 0

• wD ≥ 0

• zDTwD = 0

Of these, () , (), and () are met trivially by the assumptions of the theorem. Since zD = 0,

QIIzI + QIDzD + qI = 0, and thus wI = 0, thus satisfying () and (). Also due to zD = 0, it

suffices to show for () that QDIzI + qD ≥ 0. From above, the left hand side of this equation is

equivalent to γ(NIM
−1NI

Ta + NIv), or γwI , which itself is equivalent to γ0. Thus, wD = 0.

202

A
pp

en
di

x
E

:S
co

ri
ng

ea
ch

in
ve

rs
e

dy
na

m
ic

sc
on

tr
ol

le
r

im
pl

em
en

ta
tio

n

Ta
bl

e
18

:
A

ta
bl

e
de

sc
ri

bi
ng

th
e

be
ha

vi
or

of
ea

ch
in

ve
rs

e
dy

na
m

ic
sc

on
tr

ol
le

ri
m

pl
em

en
ta

tio
n

w
he

n
us

ed
to

co
nt

ro
ld

is
pa

ra
te

ro
bo

tm
or

ph
ol

og
ie

st
hr

ou
gh

di
ffe

re
nt

ta
sk

s.
If

th
e

ro
bo

tp
er

fo
rm

ed
th

e
ta

sk
w

ith
ou

tf
ai

lin
g

an
y

of
th

e
pe

rf
or

m
an

ce
cr

ite
ri

a
(n

o
to

rq
ue

ch
at

te
r,

no
fa

lli
ng

)
it

is
m

ar
ke

d
as

a
pa

ss
;

O
th

er
w

is
e,

th
e

ta
sk

w
ill

be
m

ar
ke

d
as

a
fa

ilu
re

fo
r

th
e

re
as

on
no

te
d

in
pa

re
nt

he
si

s.
†:

In
di

ca
te

s
w

hi
ch

in
ve

rs
e

dy
na

m
ic

s
im

pl
em

en
ta

tio
n

th
at

w
er

e
de

te
rm

in
ed

to
be

th
e

be
st

co
nt

ro
lle

r
fo

r
th

e
ex

am
pl

e
ta

sk
,

pr
io

ri
tiz

in
g:

(
)

[c
ri

tic
al

]
Su

cc
es

sf
ul

pe
rf

or
m

an
ce

of
th

e
ta

sk
;

(
)

[c
ri

tic
al

]
M

iti
ga

tio
n

of
to

rq
ue

ch
at

te
r

(c
on

tin
uo

us
co

nt
ac

tf
or

ce
s)

;
(

)
[n

on
-c

ri
tic

al
]

E
ve

n
di

st
ri

bu
tio

n
of

co
nt

ac
tf

or
ce

s
(d

is
tr

ib
ut

ed
co

nt
ac

tf
or

ce
s)

;(


)[
no

n-
cr

iti
ca

l]
C

om
pu

ta
tio

n
sp

ee
d.

203

References

H. Abbas, et al. (2013). ‘Probabilistic Temporal Logic Falsification of Cyber-Physical
Systems’. ACM Transactions on Embedded Computing Systems 12(2).

A. Ames (2013). ‘Human-Inspired Control of Bipedal Robotics via Control Lyapunov
Functions and Quadratic Programs’. In Proc. Intl. Conf. Hybrid Systems: Computation
and Control.

M. Anitescu (2006). ‘Optimization-based simulation of nonsmooth dynamics’. Mathemat-
ical Programming, Series A 105:113–143.

M. Anitescu & G. D. Hart (2004). ‘A Constraint-Stabilized Time-Stepping Approach for
Rigid Multibody Dynamics with Joints, Contacts, and Friction’. Intl. Journal for Nu-
merical Methods in Engineering 60(14):2335–2371.

M. Anitescu & F. A. Potra (1997). ‘Formulating Dynamic Multi-Rigid-Body Contact Prob-
lems with Friction as Solvable Linear Complementarity Problems’. Nonlinear Dynamics
14:231–247.

M. Anitescu & F. A. Potra (2002). ‘A Time-Stepping Method for Stiff Multi-Rigid-Body
Dynamics with Contact and Friction’. Intl. Journal for Numerical Methods in Engineer-
ing 55:753–784.

U. M. Ascher, et al. (1995). ‘Stabilization of constrained mechanical systems with DAEs
and invariant manifolds’. J. Mech. Struct. Machines 23:135–158.

J. E. Auerbach & J. C. Bongard (2012). ‘On the Relationship Between Environmental
and Mechanical Complexity in Evolved Robots’. In Intl. Conf. on the Synthesis and
Simulation of Living Systems (ALife), vol. 13, pp. 309–316.

D. Aukes & M. R. Cutkosky (2013). ‘Simulation-Based Tools for Evaluating Underactu-
ated Hand Designs’. In Proc. IEEE Intl. Conf. Robotics Automation (ICRA), Karlsruhe,
Germany.

D. M. Aukes, et al. (2014). ‘Design and testing of a selectively compliant underactuated
hand’. Intl. J. Robot. Res. 33(5).

D. Baraff (1994). ‘Fast Contact Force Computation for Nonpenetrating Rigid Bodies’. In
Proc. of SIGGRAPH, Orlando, FL.

V. Barasuol, et al. (2013). ‘A reactive controller framework for quadrupedal locomotion
on challenging terrain’. In Proc. IEEE Intl. Conf. Robot. Autom. (ICRA), Karlsruhe,
Germany.

R. Barzel, et al. (1996). ‘Plausible Motion Simulation for Computer Graphics Anima-
tion’. In R. Boulic & G. Hégron (eds.), Computer Animation and Simulation (Proc.
Eurographics Workshop), pp. 183–197.

204

J. Baumgarte (1972). ‘Stabilization of constraints and integrals of motion in dynamical
systems’. Comp. Math. Appl. Mech. Engr. 1:1–16.

A. Bemporad & M. Morari (2007). Robust model predictive control: A survey, vol. 245
of Lecture Notes in Control and Information Sciences, chap. Robust model predictive
control: A survey, pp. 207–226. Springer London, London.

R. Bhatia (2007). Positive definite matrices. Princeton University Press.

R. W. Bisseling & A. L. Hof (2006). ‘Handling of impact forces in inverse dynamics’. J.
Biomech. 39(13):2438–2444.

L. Blackmore (2006). ‘A probabilistic particle control approach to optimal, robust predic-
tive control’. In In Proceedings of the AIAA Guidance, Navigation and Control Confer-
ence.

W. Blajer, et al. (2007). ‘Multibody modeling of human body for the inverse dynamics
analysis of sagittal plane movements’. Multibody System Dynamics 18(2):217–232.

J. C. Bongard (2014). ‘Why Morphology Matters’. The Horizons of Evolutionary Robotics
pp. 125–152.

S. Boyd & L. Vandenberghe (2004). Convex Optimization. Cambridge University Press.

M. S. Branicky, et al. (2006). ‘Sampling-based planning, control and verification of hybrid
systems’. In IEE Proceedings - Control Theory and Applications.

B. Brogliato (1996). Nonsmooth Impact Mechanics: Models, Dynamics, and Control.
Springer-Verlag, London.

C. J. Budd (1996). ‘Non-smooth dynamical systems and the grazing bifurcation’. In Non-
linear Mathematics and its Applications, pp. 219–235. Cambridge Univ. Press.

S. A. Burden, et al. (2015). ‘Near–Simultaneous Footfalls Lend Stability to Multi–Legged
Gaits’. In Dynamic Walking.

A. Cangelosi, et al. (2015). Handbook of Computational Intelligence, chap. Embodied
intelligence, pp. 697–714. Springer.

A. Chatterjee (1999). ‘On the realism of complementarity conditions in rigid-body colli-
sions’. Nonlinear Dynamics 20:159–168.

A. Chatterjee & A. Ruina (1998). ‘A New Algebraic Rigid Body Collision Law Based on
Impulse Space Considerations’. ASME J. Appl. Mech. 65(4):939–951.

N. Cheney, et al. (2016). ‘On the difficulty of co-optimizing morphology and control in
evolved virtual creatures’. In Intl. Conf. on the Synthesis and Simulation of Living Sys-
tems (ALife), vol. 15, Cancun, Mexico.

205

S. H. Collins, et al. (2001). ‘A Three-Dimensional Passive-Dynamic Walking Robot with
Two Legs and Knees’. Intl. J. Robot. Res. 20(2).

S. Coros, et al. (2011). ‘Locomotion Skills for Simulated Quadrupeds’. In Proc. ACM
SIGGRAPH.

R. W. Cottle (1968). ‘The Principal Pivoting Method of Quadratic Programming’. In
G. Dantzig & J. A. F. Veinott (eds.), Mathematics of Decision Sciences, pp. 144–162.
AMS, Rhode Island.

R. W. Cottle, et al. (1992). The Linear Complementarity Problem. Academic Press, Boston.

N. B. Do, et al. (2007). ‘Efficient Simulation of a Dynamic System with LuGre Friction’.
J. of Computational and Nonlinear Dynamics 2:281–289.

M. Dorigo & M. Colombetti (1994). ‘Robot shaping: Developing situated agents through
learning’. Artificial Intelligence 70(2):321–370.

E. Drumwright & D. A. Shell (2010). ‘Modeling Contact Friction and Joint Friction in
Dynamic Robotic Simulation using the Principle of Maximum Dissipation’. In Proc. of
Workshop on the Algorithmic Foundations of Robotics (WAFR).

D. J. Duff, et al. (2011). ‘Physical simulation for monocular 3D model based tracking’. In
Proc. IEEE Intl. Conf. Robot. Autom. (ICRA).

C. Ericson (2005). Real-Time Collision Detection. Morgan Kaufmann.

J. M. Esposito, et al. (2005). Algorithmic Foundations of Robotics VI, vol. 17 of Springer
Tracts in Advanced Robotics, chap. Adaptive RRTs for Validating Hybrid Robotic Con-
trol Systems, pp. 107–121. Springer.

P. L. Fackler & M. J. Miranda (2011). ‘LEMKE’. http://www4.ncsu.edu/ pfackler/com-
pecon/toolbox.html.

R. Featherstone (1987). Robot Dynamics Algorithms. Kluwer.

R. Featherstone (2004). ‘An Empirical Study of the Joint Space Inertia Matrix’. The Intl.
J. of Robotics Research 23(9):859–871.

R. Featherstone (2008). Rigid Body Dynamics Algorithms. Springer.

S. Feng, et al. (2013). ‘3D Walking Based on Online Optimization’. In Proc. IEEE-RAS
Intl. Conf. on Humanoid Robots (HUMANOIDS), Atlanta, GA.

C. Gehring, et al. (2013). ‘Control of dynamic gaits for a quadrupedal robot’. In 2013
IEEE International Conference on Robotics and Automation, pp. 3287–3292.

E. Hairer & G. Wanner (1996). Solving ordinary differential equations II: stiff and
differential-algebraic problems, 2nd. ed. Springer Verlag, Berlin.

206

H. Hatze (2002). ‘The fundamental problem of myoskeletal inverse dynamics and its im-
plications’. J. Biomech. 35(1):109–115.

B. Hengst, et al. (2002). ‘Omnidirectional Locomotion for Quadupred Robots’. In Proc.
RoboCup 2001: Robot Soccer World Cup V, pp. 368–373.

H. M. Herr, et al. (2002). ‘A model of scale effects in mammalian quadrupedal running’.
J. Experimental Biology 205:959–967.

R. Hunger (2007). ‘Floating Point Operations in Matrix-Vector Calculus’. Tech. rep., TU
München.

M. Hutter & R. Siegwart (2012). ‘Hybrid Operational Space Control for Compliant Quad-
ruped Robots’. In Proc. Dynamic Walking.

M. Hutter, et al. (2014). ‘Quadrupedal locomotion using hierarchical operational space
control’. Intl. J. Robot. Res. 33(8):1047–1062.

A. P. Ivanov (1995). ‘On multiple impact’. J. Applied Mathematics and Mechanics
59(6):887–902.

A. M. Johnson, et al. (2016). ‘Convergent Planning’. IEEE Robotics and Automation
Letters 1(2):1044–1051.

B. Johnson & H. Kress-Gazit (2015). ‘Analyzing and revising synthesized controllers for
robots with sensing and actuation errors’. Intl. J. Robot. Res. 34:816–832.

M. Kalakrishnan, et al. (2011a). ‘Learning, Planning, and Control for Quadruped Locomo-
tion over Challenging Terrain’. Intl. J. Robot. Res. 30(2):236–258.

M. Kalakrishnan, et al. (2011b). ‘STOMP: Stochastic trajectory optimization for motion
planning’. In 2011 IEEE International Conference on Robotics and Automation, pp.
4569–4574.

T. R. Kane & D. A. Levinson (1985). Dynamics: Theory and Applications. McGraw-Hill,
New York.

G. Kewlani, et al. (2009). ‘Stochastic mobility-based path planning in uncertain environ-
ments’. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International
Conference on, pp. 1183–1189. IEEE.

J. Kim, et al. (2013). ‘Physically Based Grasp Quality Evaluation under Pose Uncertainty’.
IEEE TRANSACTIONS ON ROBOTICS 29(6).

N. Koenig & A. Howard (2004). ‘Design and Use Paradigms for Gazebo, An Open-Source
Multi-Robot Simulator’. In Proc. of IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), pp. 2149–2154, Sendai, Japan.

207

T. Koolen, et al. (2012). ‘Capturability-based Analysis and Control of Legged Locomo-
tion, Part 1: Theory and Application to Three Simple Gait Models’. Int. J. Rob. Res.
31(9):1094–1113.

S. Koos, et al. (2013a). ‘Fast Damage Recovery in Robotics with the T-resilience Algo-
rithm’. Int. J. Rob. Res. 32(14):1700–1723.

S. Koos, et al. (2013b). ‘The Transferability Approach: Crossing the Reality Gap in Evo-
lutionary Robotics’. IEEE Transactions on Evolutionary Computation 17(1):122–145.

M. Koval, et al. (2013). ‘Pose Estimation for Contact Manipulation with Manifold Particle
Filters’. In Proc. IEEE/RSJ Intl. Conf. Intell. Robots & Systems (IROS).

S. Kuindersma, et al. (2014). ‘An Efficiently Solvable Quadratic Program for Stabilizing
Dynamic Locomotion’. In Proc. IEEE Intl. Conf. Robot. Autom. (ICRA).

A. D. Kuo (1998). ‘A least-squares estimation approach to improving the precision of
inverse dynamics calculations’. Trans. American Society Mech. Engineers (ASME) J.
Biomech. Engr. 120:148–159.

C. Lacoursière (2003). ‘Splitting Methods for Dry Frictional Contact Problems in Rigid
Multibody Systems: Preliminary Performance Results’. In M. Ollila (ed.), Proc. of
SIGRAD, pp. 11–16.

C. Lacoursière (2007). Ghosts and Machines: Regularized Variational Methods for In-
teractive Simulations of Multibodies with Dry Frictional Contacts. Ph.D. thesis, Umeå
University.

S. LaValle & J. J. Kuffner, Jr. (2001). ‘Randomized Kinodynamic Planning’. Intl. J. of
Robotics Research 20(5):378–400.

R. Leine & N. van de Wouw (2008a). Stability and convergence of mechanical systems
with unilateral constraints. Springer Verlag.

R. Leine & N. van de Wouw (2008b). ‘Stability properties of equilibrium sets of non-linear
mechanical systems with dry friction and impact’. Nonlinear Dynamics 51(4):551–583.

R. I. Leine & C. Glocker (2003). ‘A set-valued force law for spatial Coulomb-Contensou
friction’. Europen J. of Mechanics/A Solids 22(2):193–216.

C. E. Lemke (1965). ‘Bimatrix Equilibrium Points and Mathematical Programming’. Man-
agement Science 11:681–689.

S. Li, et al. (2015a). ‘State Estimation for Dynamic Systems with Intermittent Contact’. In
Proc. IEEE Intl. Conf. Robot. Autom. (ICRA).

S. Li, et al. (2015b). ‘A Comparative Study of Contact Models for Contact-Aware State
Estimation’. In Proc. IEEE/RSJ Intl. Conf. Intell. Robots & Systems (IROS).

208

W. Lohmiller & J.-J. E. Slotine (1998). ‘On Contraction Analysis for Non-linear Systems’.
Automatica 34(6):683–696.

K. Lynch & M. J. Mason (1995). ‘Pushing by slipping, Slip with infinite friction, and
perfectly rough surfaces’. Intl. J. Robot. Res. 14(2):174–183.

J. Mahler, et al. (2015). ‘GP-GPIS-OPT: Grasp Planning With Shape Uncertainty Using
Gaussian Process Implicit Surfaces and Sequential Convex Programming’. In IEEE Intl.
Conf. on Robotics and Automation (ICRA).

O. L. Mangasarian & S. Fromovitz (1967). ‘The Fritz John Necessary Optimality Condi-
tions in the Presence of Equality and Inequality Constraints’. J. Mathematical Analysis
and Appl. 17:37–47.

D. L. Marruedo, et al. (2002). ‘Input-to-state stable MPC for constrained discrete-time
nonlinear systems with bounded additive uncertainties’. In Proceedings of the 41st IEEE
Conference on Decision and Control, 2002., vol. 4, pp. 4619–4624 vol.4.

N. A. Melchior & R. Simmons (2007). ‘Particle RRT for path planning with uncertainty’.
In Robotics and Automation, 2007 IEEE International Conference on, pp. 1617–1624.
IEEE.

B. Mirtich (1996). Impulse-based Dynamic Simulation of Rigid Body Systems. Ph.D. thesis,
University of California, Berkeley.

M. Mistry, et al. (2010). ‘Inverse Dynamics Control of Floating Base Systems Using Or-
thogonal Decomposition’. In Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA),
pp. 3406–3412.

K. Mombaur, et al. (2005). ‘Open-loop stable running’. Robotica 23(1).

I. Mordatch, et al. (2015). ‘Ensemble-CIO: Full-Body Dynamic Motion Planning that
Transfers to Physical Humanoids’. In IEEE Intl. Conf. on Robotics and Automation
(ICRA).

I. Mordatch, et al. (2012). ‘Discovery of complex behaviors through contact-invariant
optimization.’. ACM Trans. Graph. 31(4):43.

I. Mordatch, et al. (2013). ‘Animating Human Lower Limbs Using Contact-Invariant Opti-
mization’. ACM Trans. on Graphics 32(6).

J. J. Moreau (1983). Standard inelastic shocks and the dynamics of unilateral constraints,
pp. 173–221. Springer-Verlag, New York.

K. G. Murty (1988). Linear Complementarity, Linear and Nonlinear Programming. Hel-
dermann Verlag, Berlin.

A. L. Nelson, et al. (2009). ‘Fitness functions in evolutionary robotics: A survey and
analysis’. Robotics and Autonomous Systems 57(4):345—370.

209

P. E. Nikravesh (1988). Computer-Aided Analysis of Mechanical Systems. Prentice Hall.

J. Nocedal & S. J. Wright (2006). Numerical Optimization, 2nd ed. Springer-Verlag.

C. Ott, et al. (2011). ‘Posture and Balance Control for Biped Robots based on Contact Force
Optimization’. In Proc. IEEE-RAS Intl. Conf. on Humanoid Robots (HUMANOIDS).

P. Painlevé (1895). ‘Sur le lois du frottement de glissemment’. C. R. Académie des Sciences
Paris 121:112–115.

J.-S. Pang & D. E. Stewart (2008). ‘Differential variational inequalities’. Math. Program.,
Ser. A 113:345–424.

A. Papachristodoulou & S. Prajna (2009). ‘Robust Stability Analysis of Nonlinear Hybrid
Systems’. IEEE Trans. Autom. Control 54(5).

S. Patil, et al. (2014). ‘Gaussian belief space planning with discontinuities in sensing
domains’. In Robotics and Automation (ICRA), 2014 IEEE International Conference on,
pp. 6483–6490. IEEE.

J. Peters, et al. (2008). ‘A unifying methodology for robot control with redundant DOFs’.
Autonomous Robots 24(1–12).

R. Pfeifer & F. Iida (2009). Creating Brain-Like Intelligence, vol. 5436 of Lecture Notes
in Computer Science, chap. Morphological Computation: Connecting Body, Brain, and
Environmentand environment, pp. 66–83. Springer.

R. Platt Jr, et al. (2010). ‘Belief space planning assuming maximum likelihood observa-
tions’ .

B. Ponton, et al. (2016). ‘Risk sensitive nonlinear optimal control with measurement un-
certainty’. CoRR abs/1605.04344.

M. Posa, et al. (2014). ‘A Direct Method for Trajectory Optimization of Rigid Bodies
Through Contact’. Int. J. Rob. Res. 33(1):69–81.

M. Posa & R. Tedrake (2012). ‘Direct Trajectory Optimization of Rigid Body Dynamical
Systems through Contact’. In Proc. Workshop on Algorithmic Foundations of Robotics
(WAFR), Boston.

M. Posa, et al. (2015). ‘Stability Analysis and Control of Rigid Body Systems with Impacts
and Friction’. IEEE Trans. Autom. Control .

S. Prajna, et al. (2007). ‘A Framework for Worst-Case and Stochastic Safety Verification
Using Barrier Certificates’. IEEE Trans. Autom. Control 52(8).

S. Prajna & A. Rantzer (2007). ‘Convex Programs for Temporal Verification of Nonlinear
Dynamical Systems’. SIAM J. Control Optim. .

210

S. Prentice & N. Roy (2009). ‘The Belief Roadmap: Efficient Planning in Belief Space
by Factoring the Covariance’. The International Journal of Robotics Research 28(11-
12):1448–1465.

W. H. Press, et al. (1992). Numerical Recipes in C. Cambridge University Press, second
edn.

F. Qian & D. Goldman (2015). ‘Scattering of a legged robot in a heterogeneous granular
terrain’. Bulletin of the American Physical Society 60.

M. H. Raibert (1986). Legged Robots That Balance. MIT Press, Cambridge, MA.

L. Righetti, et al. (2013). ‘Optimal distribution of contact forces with inverse-dynamics
control’. Intl. J. Robot. Res. 32(3):280–298.

L. Righetti, et al. (2011). ‘Inverse Dynamics Control of Floating-Base Robots with External
Constraints: A Unified View’. In Proc. IEEE Intl. Conf. on Robotics and Automation
(ICRA), Shanghai, China.

E. Rombokas, et al. (2012). ‘Biologically inspired grasp planning using only orthogonal
approach angles’. In 2012 4th IEEE RAS EMBS International Conference on Biomedical
Robotics and Biomechatronics (BioRob), pp. 1656–1661.

L. Saab, et al. (2013). ‘Dynamic Whole-Body Motion Generation Under Rigid Contacts
and Other Unilateral Constraints’. IEEE Trans. Robotics 29(2).

O. Saglam & K. Byl (2014). ‘Robust Policies via Meshing for Metastable Rough Terrain
Walking’. In Robotics: Science and Systems (RSS).

R. W. H. Sargent (1978). ‘An efficient implementation of the Lemke Algorithm and its
extension to deal with upper and lower bounds’. Mathematical Programming Study
7:36–54.

B. Satzinger, et al. (2014). ‘More Solutions Means More Problems: Resolving Kinematic
Redundancy in Robot Locomotion on Complex Terrain’. In Proc. IEEE/RSJ Intl. Conf.
Intell. Robots & Systems (IROS), Chicago.

A. B. Sawers & M. E. Hahn (2010). ‘The Potential for Error with Use of Inverse Dynamic
Calculations in Gait Analysis of Individuals with Lower Limb Loss: A Review of Model
Selection and Assumptions’. J. Prosthetics & Orthotics 22(1):56–61.

S. Schaal (2009). ‘The SL simulation and real-time control software package’. Tech. rep.,
Univ. Southern California.

A. T. Schwarm & M. Nikolaou (1999). ‘Chance-constrained model predictive control’.
AIChE Journal 45(8):1743–1752.

L. Sciavicco & B. Siciliano (2000). Modeling and Control of Robot Manipulators, 2nd Ed.
Springer-Verlag, London.

211

J. Shen & J. S. Pang (2005). ‘Linear Complementarity Systems: Zeno States’. SIAM J. on
Control and Optimization 44(3):1040–1066.

K. Sims (1994). ‘Evolving Virtual Creatures’. In Special Interest Group on Computer
GRAPHics and Interactive Techniques (SIGGRAPH), pp. 15–22.

B. Smith, et al. (2012). ‘Reflections on Simultaneous Impact’. ACM Trans. on Graphics
(Proc. of SIGGRAPH) 31(4):106:1–106:12.

J. Smith, et al. (2014). ‘Momentum-based whole body control framework—application to
the humanoid robots Atlas and Valkyrie’. In Proc. IEEE/RSJ Intl. Conf. Intell. Robots
Systems (IROS) workshop on Whole-Body Control for Robots in the Real World.

B. Stephens & C. Atkeson (2010a). ‘Dynamic Balance Force Control for Compliant Hu-
manoid Robots’. In Proc. IEEE/RSJ Intl. Conf. Intelligent Robots and Systems (IROS).

B. J. Stephens & C. G. Atkeson (2010b). ‘Push Recovery by stepping for humanoid robots
with force controlled joints’. In 2010 10th IEEE-RAS International Conference on Hu-
manoid Robots, pp. 52–59.

D. Stewart & J. C. Trinkle (2000). ‘An Implicit Time-Stepping Scheme for Rigid Body
Dynamics with Coulomb Friction’. In Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA), San Francisco, CA.

D. E. Stewart (1998). ‘Convergence of a time-stepping scheme for rigid-body dynamics
and resolution of Painlevé’s problem’. Arch. Ration. Mech. Anal. 145:215–260.

D. E. Stewart (2000a). ‘Rigid-body Dynamics with Friction and Impact’. SIAM Review
42(1):3–39.

D. E. Stewart (2000b). ‘Time-stepping methods and the mathematics of rigid body dynam-
ics’. In A. Guran, B. Feeny, A. Klarbring, & Y. Ishida (eds.), Impact and Friction of
Solids, Structures, and Intelligent Machines. World Scientific.

D. E. Stewart & J. C. Trinkle (1996). ‘An implicit time-stepping scheme for rigid body
dynamics with inelastic collisions and Coulomb friction’. Intl. Journal for Numerical
Methods in Engineering 39(15):2673–2691.

R. Stribeck (1902). ‘Die wesentlichen Eigenschaften der Gleit und Rollenlager (The key
qualities of sliding and roller bearings)’. Zeitschrift des Vereines Seutscher Ingenieure
46(38–39):1342–1348.

T. Sugihara & Y. Nakamura (2003). ‘Variable Impedant Inverted Pendulum Model Control
for a Seamless Contact Phase Transition on Humanoid Robot’. In Proc. IEEE Intl. Conf.
Robot. Autom. (ICRA).

J. R. Taylor & E. M. Drumwright (2016). ‘State Estimation of a Wild Robot Toward
Validation of Rigid Body Simulation’. In Proc. Intl. Conf. on Simulation, Modeling, and
Programming for Autonomous Robots (SIMPAR), San Francisco, CA.

212

J. R. Taylor, et al. (2014). ‘Making Time Make Sense in Robotic Simulation’. In Proc. Intl.
Conf. on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR),
Bergamo, Italy.

R. Tedrake & the Drake Development Team (2016). ‘Drake: A planning, control, and
analysis toolbox for nonlinear dynamical systems’.

E. Todorov (2011). ‘A convex, smooth and invertible contact model for trajectory opti-
mization’. In Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA), Shanghai.

E. Todorov (2014). ‘Analytically-invertible dynamics with contacts and constraints: theory
and implementation in MuJoCo’. In Proc. IEEE Intl. Conf. Robot. Autom. (ICRA).

C. J. Tomlin, et al. (2000). ‘A Game Theoretic Approach to Controller Design for Hybrid
Systems’. Proc. IEEE 88:949–969.

C. J. Tomlin, et al. (2003). ‘Computational Techniques for the Verification of Hybrid Sys-
tems’. Proc. of the IEEE 91(7).

J. Trinkle, et al. (1997). ‘On Dynamic Multi-Rigid-Body Contact Problems with Coulomb
Friction’. Zeithscrift fur Angewandte Mathematik und Mechanik 77(4):267–279.

C. D. Twigg & D. L. James (2007). ‘Many-worlds Browsing for Control of Multibody
Dynamics’. ACM Trans. on Graphics 26(3).

J. van den Berg, et al. (2011). ‘LQG-MP: Optimized path planning for robots with mo-
tion uncertainty and imperfect state information’. The International Journal of Robotics
Research 30(7):895–913.

A. J. Van Den Bogert & A. Su (2008). ‘A weighted least squares method for inverse
dynamic analysis’. Comput. Methods Appl. Mech. Eng. 11(1):3–9.

V. Venkatasubramanian, et al. (1993). ‘Analysis of local bifurcation mechanisms in large
differential-algebraic systems such as the power system’. In Proceedings of 32nd IEEE
Conference on Decision and Control, pp. 3727–3733 vol.4.

R. Walters, et al. (2002). Uncertainty Analysis for Fluid Mechanics with Applications.
ICASE report. ICASE, NASA Langley Research Center.

J. Wang, et al. (2009). ‘Robot Jenga: Autonomous and Strategic Block Extraction’. In
Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), St. Louis, MO.

J. Weisz & P. K. Allen (2012). ‘Pose Error Robust Grasping from Contact Wrench Space
Metrics’. In IEEE Intl. Conf. on Robotics and Automation (ICRA).

D. Xiu & J. S. Hesthaven (2005). ‘High-Order Collocation Methods for Differential Equa-
tions with Random Inputs’. SIAM Journal on Scientific Computing 27(3):1118–1139.

J. Yang, et al. (2007). ‘An Inverse Dynamical Model for Slip Gait’. In Proc. First Intl.
Conf. Digital Human Modeling, Beijing, China.

213

K.-T. Yu, et al. (2016). ‘More than a million ways to be pushed. A high-fidelity experimen-
tal dataset of planar pushing’. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on, pp. 30–37. IEEE.

S. Zapolsky (2015). ‘Pacer’. https://github.com/PositronicsLab/Pacer.

S. Zapolsky & E. Drumwright (2014). ‘Quadratic Programming-based Inverse Dynamics
Control for Legged Robots with Sticking and Slipping Frictional Contacts’. In Proc.
IEEE/RSJ Intl. Conf. Intell. Robots & Systems (IROS).

S. Zapolsky, et al. (2013). ‘Inverse Dynamics for a Quadruped Robot Locomoting on
Slippery Surfaces’. In Proc. Intl. Conf. Climbing Walking Robots (CLAWAR), Sydney,
Australia.

S. Zapolsky & E. M. Drumwright (2015). ‘Adaptive Integration for Controlling Speed vs.
Accuracy in Multi-Rigid Body Simulation’. In Proc. IEEE/RSJ Intl. Conf. Intell. Robots
& Systems (IROS).

L. E. Zhang, et al. (2013). ‘A Dynamic Bayesian Approach to Real-Time Estimation and
Filtering in Grasp Acquisition’. In Proc. IEEE Intl. Conf. Robot. Autom. (ICRA).

H. Zhao, et al. (2014). ‘Human-inspired multi-contact locomotion with amber2’. In
ACM/IEEE, International Conference on Cyber Physics System.

Y. Zheng & W.-H. Qian (2005). ‘Coping with the Grasping Uncertainties in Force-closure
Analysis’. Int. J. Rob. Res. 24(4):311–327.

S. Zickler & M. Veloso (2009). ‘Efficient Physics-Based Planning: Sampling Search Via
Non-Deterministic Tactics and Skills’. In Proc. Autonomous Agents and Multiagent
Systems (AAMAS).

214

	 Acknowledgments
	 Abstract
	 List of Figures
	 List of Tables
	1 Introduction
	1.1 Designing and testing robotic systems subject to uncertainty
	1.2 Contributions and organization of chapters

	2 Background and Related work
	2.1 Planning with uncertainty
	2.1.1 Robust Planning and Control
	2.1.2 Monte Carlo method and particle approaches
	2.1.3 Simulation-based planning

	2.2 Automated robot controller and mechanism design
	2.2.1 Evolutionary robotics
	2.2.2 Morphological computation
	2.2.3 Situated robotics & embodied cognition
	2.2.4 Validity of programmed behavior in situ

	2.3 Limbed robots: Nonholonomic control with contact
	2.3.1 Locomotion

	2.4 Stability analysis and control of nonsmooth systems
	2.4.1 Bifurcations in dynamical systems

	2.5 The rigid body
	2.5.1 Rigid body dynamics
	2.5.2 Non-smooth mechanical systems
	2.5.3 Simulating multi-rigid bodies
	2.5.4 Spatial and generalized velocities

	3 Particle traces
	3.1 Control and simulation of robotic systems subject to uncertainty
	3.2 Sampling-based approach
	3.2.1 Generating particles
	3.2.2 Pseudorandom sampling of particle parameters
	3.2.3 Quasi-random sampling

	3.3 Control Policy
	3.4 Tasks & Task Requirements
	3.5 Physically simulating particles: The ``Particle Traces'' approach
	3.5.1 Computational Complexity

	3.6 Processing particle trace telemetry
	3.6.1 Detecting particle trace bifurcation

	3.7 Conclusion

	4 Virtual Falsification: checking for faulty robot behavior in sim
	4.1 Policy scoring: success rate
	4.2 Enacting a safety factor for measured particle parameters
	4.3 Illustrative & motivating examples: using the particle traces approach in sim
	4.3.1 Manipulator: comparing policies for picking-up a ball
	4.3.2 Quadruped: detecting grazing bifurcation
	4.3.3 Quadruped: Verifying the stability of gait transition timing online

	4.4 Validation of particle traces approach in situ
	4.4.1 Robot
	4.4.2 Control policy: gait parameters
	4.4.3 Results

	4.5 Conclusion

	5 Computer-aided robot improvement
	5.1 Approach
	5.1.1 Limitations on robot performance
	5.1.2 Quantifying robot limitations for computer-aided design modification
	5.1.3 Control Policy: task trajectory

	5.2 Iterative robot design
	5.2.1 Considering coordinate based witness functions with a ``sliding window''
	5.2.2 Relating witness functions to design and controller parameters

	5.3 Conclusion

	6 Virtual Prototyping: simulation-assisted robot design
	6.1 Overview of virtual and in situ tests
	6.1.1 Robot Limitations

	6.2 Designing a 3D printed Robot
	6.2.1 Experimental design
	6.2.2 Morphological parameterization
	6.2.3 Gait Parameterization
	6.2.4 Robot performance in sim
	6.2.5 Results in situ

	6.3 Reconfigurable Quadruped
	6.3.1 Platform
	6.3.2 Control policy: gait parameterization
	6.3.3 Results in situ

	6.4 Conclusion

	7 Inverse Dynamics with Contact
	7.0.1 Invertibility of the rigid contact model
	7.0.2 Indeterminacy in the rigid contact model
	7.0.3 Contributions

	7.1 Background and related work
	7.1.1 Complementarity problems
	7.1.2 Relationship between LCPs and MLCPs
	7.1.3 The multi-body
	7.1.4 Rigid contact model
	7.1.5 Contact force indeterminacy
	7.1.6 Contact models for inverse dynamics in the context of robot control
	7.1.7 Contact models for inverse dynamics in the context of biomechanics

	7.2 Discretized inverse dynamics
	7.2.1 Incorporating contact into planned motion
	7.2.2 Incorporating contact constraints that do not coincide with control loop period endpoint times
	7.2.3 Computing points of contact between geometries

	7.3 Inverse dynamics with no-slip constraints
	7.3.1 Normal contact constraints
	7.3.2 Discretized rigid body dynamics equation
	7.3.3 Inverse dynamics constraint
	7.3.4 No-slip (infinite friction) constraints
	7.3.5 Retrieving the inverse dynamics forces
	7.3.6 Indeterminacy mitigation
	7.3.7 Scaling inverse dynamics runtime linearly in number of contacts

	7.4 Inverse dynamics with Coulomb friction
	7.4.1 Coulomb friction constraints
	7.4.2 Resulting MLCP
	7.4.3 Contact indeterminacy

	7.5 Convex inverse dynamics without normal complementarity
	7.5.1 Two-stage vs. single-stage approaches
	7.5.2 Computing inverse dynamics and contact forces simultaneously (Stage I)

	7.6 Experiments
	7.6.1 Platforms
	7.6.2 Source of planned trajectories
	7.6.3 Evaluated controllers
	7.6.4 Software and simulation setup
	7.6.5 Terrain types for locomotion experiments
	7.6.6 Tasks

	7.7 Results
	7.7.1 Smoothness of torque commands
	7.7.2 Verification of correctness of inverse dynamics
	7.7.3 Controller behavior
	7.7.4 Center-of-mass tracking performance
	7.7.5 Discussion of inverse dynamics based control for legged locomotion

	7.8 Conclusion

	8 Numerical stability for simulating robots controlled with error feedback
	8.1 ``Stiff'' systems
	8.1.1 High mass ratios

	8.2 ``Motors'' in Open Dynamics Engine
	8.3 Kinematic simulations
	8.4 Multi-body dynamics simulation with contact and inverse dynamics
	8.4.1 Drawback of the MLCP formulation
	8.4.2 Solvability of the MLCP formulation

	8.5 Experiments
	8.5.1 Testing the hypothesis that incorporating inverse dynamics control leads to more stable simulations than error feedback control
	8.5.2 Testing the hypothesis that incorporating prescribed motion constraints leads to more stable simulations than using inverse dynamics control
	8.5.3 Testing hypothesis that incorporating transmission models increases the stability of robots driven by error feedback control
	8.5.4 Discussion of Results

	8.6 Conclusion

	9 Quadrupedal Robot Locomotion
	9.1 Locomotion control policy
	9.2 Gait Planning
	9.2.1 Gait parameters
	9.2.2 Gait planning algorithm
	9.2.3 Gait Timing
	9.2.4 Stance Phase
	9.2.5 Swing Phase

	9.3 Plugin-based robot interface and control architecture
	9.3.1 Modular planning and control framework

	9.4 Driving and Navigation
	9.4.1 Steering
	9.4.2 Gamepad input

	9.5 Conclusion

	10 Discussion, Conclusions, and Future Work
	 Appendix
	 References

