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Abstract— Most current approaches for simulating robots
in 3D with rigid body dynamics and contact operate by
taking fixed, first order integration steps. In this paper, we
investigate the viability of various integration approaches (semi
implicit and fully explicit first-order, fourth order Runge Kutta,
and variable step first order) for maximizing computational
efficiency (accuracy and stability vs. running time) on typical
robotics manipulation and locomotion applications.

After arguing that first-order accuracy to the dynamics
models is sufficient for most manipulator and locomotion
robotics applications, we focus our investigation on methods
for efficient, stable dynamic simulations. We describe a novel
algorithm that attempts to provide smooth convergence to the
true dynamics solution, which allows us to estimate the error
in kinetic energy around an integration step size (as a proxy
for the simulation stability). We use this algorithm to evaluate
multiple hypotheses using simulation-based experiments with
two virtual robot models toward developing methods for faster
dynamic simulations.

I. INTRODUCTION

Physical interaction with an environment is a central facet
of robotics. Accurate modeling of these interactions can
allow researchers to predict the performance of and optimize
robotic systems [10]; can be used to generate better controls
for robots [30], [29]; and can plan grasps and footholds,
among other possibilities. DARPA’s recent robotics challenge
was first conducted in simulation, bringing attention to the
power and limitations of 3D dynamics “engines” for simu-
lating robots; the past two years has seen the introduction
of several new simulation engines (DART, MuJoCo, and
RPI-Sim), all of which—like ODE and Bullet—use a
time stepping approach [26] that takes fixed integration steps.
The sudden proliferation of engines by robotics researchers
indicates clear interest in producing faster simulations with-
out physical artifacts and targeted to robotics applications.

This paper focuses on robotic simulations applied to
robotic locomotion and manipulation applications. Given
those foci, this paper hopes to provide data toward answering
the following questions: ()How can we know when a multi-
rigid body dynamics simulation is sufficiently accurate?; ()
What type of integration scheme should be selected to maxi-
mize performance (numerical accuracy or numerical stability
vs. speed) over state of the art time stepping approaches?; and
()How much can dissipation approaches increase simulation
stability and at what cost to accuracy?
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II. BACKGROUND

We next describe background on simulating multi-rigid
body systems subject to impact and friction (§II-A), includ-
ing discussion on higher order schemes (§II-B), and the ef-
fects of first order integration on robotic applications (§II-C).

A. Integration of multi-rigid body systems subject to impact
and friction

Robust and accurate simulation of multi-rigid bodies with
impacts, contacts, and friction is challenging because rigid
body contact problems with friction may require impulsive
forces even without collisions [26] (exemplified by, e.g.,
Painlevé’s Paradox [23]), because constraints (joints and
contacts) often become violated during the simulation, and
because Zeno type behaviors (where the simulation is unable
to progress in time) can occur. The result is that standard
integration algorithms for ODEs/DAEs with “events” (event
driven methods [6], depicted in Figure 1) have been mostly
supplanted with approaches (time stepping methods [26], see
Figure 2) that discretize the Differential Complementarity
Problem formulation [24] and solve for impulsive forces that
satisfy constraints (friction limits, non-interpenetration, etc.)

Most recent multi-rigid-body dynamics engines are based
on a time stepping approach discovered by Moreau [22]
which avoids solving for precise times of contact; locating
event times can make event driven simulation intractable
when many contacts occur over a small interval of time, e.g.,
as in simulations of granular media. And Stewart showed
that, under certain assumptions, the time-stepping simulation
converges to the continuous time solution of the dynamics
as the integration step size becomes sufficiently small [25].
We are not aware of any approaches that can indicate when
convergence is near. However, we describe an algorithm that
aims to provide smooth convergence to the continuous time
solution for a nominal integration step size.

The relatively isolated nature of contact interactions (i.e.,
there are generally few pairs of rigid bodies contacting at any
one time) in many applications in Robotics makes finding
exact times of contact tractable, which minimizes interpene-
tration between rigid bodies. Additionally, no research group
has yet discovered a time stepping method that can guarantee
that contacts are not missed. This paper attempts to provide
such a method.

B. Some higher order schemes

Higher-order integration approaches are a common ap-
proach to obtain higher performance (via larger step sizes
to offset the increased number of function evaluations) on



initial value problems for ODEs/DAEs. We next describe a
few such schemes applied to multi-rigid-body simulation.

Mirtich’s event-driven type simulation scheme [21] is
not subject to Painlevé’s Paradox, but is still subject to
Zeno behavior from modeling sustained contacts as impacts.
Mirtich mitigates this problem by ensuring that bodies only
contact over short time intervals (thereby introducing new
problems as Mirtich acknowledges). Arbitrary integrators can
be applied to the ODEs/DAEs between impacts. Mirtich’s ap-
proach ensures that all impacts are detected (to the accuracy
of the integration scheme).

Acary describes a hybrid event driven / time stepping
scheme that uses event driven methods over time intervals
exhibiting smooth dynamics and first-order time stepping
otherwise [1]; one of the hardest problems that Acary ad-
dresses is that of ensuring that the resulting hybrid approach
is consistent. Acary does not investigate how to ensure that
accuracy is sufficient for the low order time stepping scheme.

Studer et al. [27] note that, “Event-driven methods are
very well suited for systems with few contacts and long
smooth parts of the motion, while time-stepping schemes
have advantages for systems with many contacts...” Studer et
al. then present a method that attempts to combine the
advantages of both: ODEs/DAEs are integrated to “switching
points” where the ODEs/DAEs would change, as when a
contact transitions from sliding to sticking or when an impact
occurs, but time stepping is used to mitigate Zeno behavior.
The resulting approach is of arbitrary order. Studer et al.’s
work is usable for conducting the necessary experiments for
this paper, but the inability of the approach (as described) to
prevent tunneling1 led us to develop the method described
in Section III.

Fig. 1. Depiction of an event driven approach to simulation. The ODEs
of motion are integrated up to the time of an event (an impact), the impact
is modeled, and the ODEs are integrated until the next impact.

C. Effects of first order integration on robotics applications

Typical robot control loops run between 100 Hz and
10,000 Hz. Assuming that the simulation must treat the
robot’s control loop as a black box and that the controls are
not necessarily smooth, the maximum integration step will
thereby be limited to the inverse of the control frequency.
If we integrate using a first-order approach at steps of
∆t = 0.01 seconds, then the truncated terms in a Taylor
Series approximation would be of a scale 1

100 that of the
present terms. Therefore, higher order effects must be quite
significant for Euler integration to be inefficient at simulating
typical legged robots and manipulators.

1Tunneling occurs when a moving body passes completely through an-
other body [14] due to insufficiently granular discrete geometric intersection
(collision detection) checking.

III. ADAPTIVE TIME STEPPING SIMULATION

This section describes two algorithms. The first algorithm,
presented as Algorithm 1, simulates a multi-rigid body sys-
tem over time interval [t0, tf ] while ensuring that no impacts
or contacts are missed to the accuracy of the integrator
within that interval. We will build on this algorithm, yielding
Algorithm 2, to estimate error through smooth convergence
to the continuous time solution (for a nominal step size).
Without loss of generality, this section assumes any bilateral
joint constraints are explicit (those that can be represented by
a body’s independent coordinates). Neither do we consider
limits on the range of motion of bilateral constraints though
such limits are easily incorporated into this formulation.

A. Simulation without missing impacts

We assume that the multi-rigid body dynamics are inte-
grated over interval h using a first order approach like:

qi+1 ← qi + hvi (1)
vi+1 ← vi + hfqi+1,vi (2)

where q corresponds to generalized coordinates, v corre-
sponds to generalized velocities, and f(.) corresponds to
an ordinary differential equation. We compute f(.) with
respect to the new positions and the old velocities, but
such a choice is arbitrary (we could also compute f(.)
using the old positions and old velocities). If q contains
unit quaternion components to store rigid body orientation
intermediate steps may be taken: () converting the spatial
velocity components in vi to a differential quaternion and
() projecting the quaternion components in qi+1 back onto
SO(3), as described in [20]. Such details can be omitted
from further discussion without loss of generality.

1) Conservative advancement plus time stepping: The
idea behind our approach, presented as Algorithm 1,
is to combine Mirtich’s conservative advancement ap-
proach [21]—which determines integration steps such that
the first time of impact between bodies (if any) is found2—

2Applying generic root finding schemes to this problem as in [27] makes
the simulation susceptible to missing the first impact (finding a later impact
instead) or reporting no impacts when one or more exists (i.e., tunneling).

Fig. 2. A depiction of the way a time stepping simulation works. At left,
all grains below the dotted line will impact the ground plane within time
interval ∆t. A time stepping approach might treat all of those grains as
impacting simultaneously at time t (as shown at right) when determining
state t+ ∆t.



with a first order time stepping scheme that “adaptively”
steps to impacts and contacts. Lines 3–15 integrate repeatedly
until an impact event is encountered. Using our first order
scheme with conservative advancement,

r(q,v) ≡ ||d||/(d̂T(ẋA − ẋB) + |d̂× ωA|rmaxA + . . . (3)

|d̂× ωB |rmaxB ),

allows us to assume constant velocity over the time interval,
which speeds the conservative advancement process consid-
erably (d is the vector between the closest point on the
first rigid body to the closest point on the second body,
d̂ ≡ d/||d||, ẋ is the linear velocity of a body, ω is
the angular velocity of a body, and rmax is the maximum
distance of any point on a body from the body’s center
of mass—see [21], [31] for further details). Note that the
commonly implemented time stepping method (see, e.g., [4]),
which takes a fixed step of size ∆t (thereby permitting
some interpenetration) can be obtained by setting hmin (the
minimum step size) to ∆t.

The conservative advancement process is repeated until
a pair of bodies either come into contact or the positions
have been integrated over the full interval (of size ∆t).
After our approach integrates the positions, it then integrates
velocities (Line 9), which includes application of an impact
model (e.g., [12]) on Line 11. The impact model (applied via
function k(.)) serves identically to standard time stepping
mechanisms; using, e.g., the contact model described in [4]
as an impact model would yield identical results between Al-
gorithm 1 (assuming hmin = ∆t) and [4]. The impact model
applies no impulses if {qi+1,v

∗
i+1} does not correspond to

an impacting state: vi+1 then equals v∗i+1.
2) Ensuring that tc > 0: For conservative advancement to

return a nonzero value, (some small) positive distance must
be maintained between each pair of bodies. Thus, on a call
to SIMULATE, at least the first computation of tc on Line 4
must return a positive value. A simple way to effect this
is to apply the projection approach of Cline and Pai [7]
directly after SIMULATE to keep the bodies separated by
that small distance. Also, notice how Algorithm 1 handles
bodies in sustained contact. For sustained contacts—with the
time derivative of the signed distance function being zero,
based on the current state of the system—the conservative
advancement process should determine that the bodies move
along, rather than into, the contact manifold, thus implying
that r(qi+1,vi) > 0. Forces that act to push the bodies
together (e.g., gravity) on Line 9 can be counteracted by
the impact model on Line 10 to keep the bodies in sustained
contact (as appropriate).

To conclude discussion of this algorithm, note that tun-
neling will not be observed (for sufficiently small hmin): the
approach takes small steps when necessary (i.e., for accuracy
or to keep bodies from interpenetrating) and large steps
otherwise.

B. Simulation with conservative conservative advancement

This section will build on Algorithm 1 by adding inte-
gration with error control. We can use standard techniques

for estimating integration error (see [17]), which compare
the result from taking one full integration step against the
result from taking two half steps. However, care is necessary
because a naı̈ve approach might detect and model an impact
at the first half step that was not detected at the full step,
for example, thereby invalidating the necessary smoothness
conditions for the error estimates to hold.

This algorithm attempts to provide smooth convergence to
the continuous time solution to the dynamics for a nominal
step size. The idea is to subdivide the desired integration
interval as necessary until every impacts has been detected
and modeled. The strongest assumption is that the first-order
error estimate (recommended by Hairer et al. [17]) is a suf-
ficiently conservative bound; this approach has been applied
successfully in existing integration schemes (e.g., [1]).

1) Conservative conservative advancement: Algorithm 2
operates using a process we call conservative conservative
advancement (C2A). The idea is that integration step size can
be decreased, repeatedly if necessary, until () the estimated
local kinetic error in energy from integration (see Lines 18
and 19) is within the desired absolute (for simplicity of
presentation) tolerance (ε) on Line 22 and () the interval
that the bodies were integrated over is free of impacts (using
bounds on velocity). These velocity bounds are derived
from error estimates computed by the integration algorithm,
and are accounted for via s(.), a modification of r(.) that
leverages these velocity bounds:

s(q,v, ev) ≡||d||/(d̂T(ẋA − ẋB)+ (4)

|d̂|
T

(|eẋA
|+ |eẋB

|) + |d̂× g(ωA, eωA
)|rmaxA+

|d̂× g(ωB , eωB
)|rmaxB ).

where ev = {eẋ, eω} are error estimates for the linear and
angular velocities of a rigid body, |.| is applied element-wise
for vectors, and g(.) is defined as:

g(ω, eω) ≡



{
ωx + eωx

if |ωx + eωx
| > |ωx − eωx

|
ωx − eωx

if |ωx + eωx
| ≤ |ωx − eωx

|{
ωy + eωy

if |ωy + eωy
| > |ωy − eωy

|
ωy − eωy

if |ωy + eωy
| ≤ |ωy − eωy

|{
ωz + eωz

if |ωy + eωz
| > |ωz − eωz

|
ωz − eωz if |ωz + eωz | ≤ |ωz − eωz |


(5)

Finally, Lines 3–6 of Algorithm 2 allow the algorithm to be
used in purely time stepping form, if desired (for very small
step sizes). Richardson Extrapolation (Lines 29–30) is used
to obtain a second order solution, as described in [17].

2) Integration error as kinetic energy error: This algo-
rithm allows distilling integration error into a scalar (rather
than the usual absolute and relative error tolerances—with
physically incomparable units along different dimensions—
used in generic integration schemes with error control). We
will argue that this estimated kinetic energy error can be used
to assess stability: if the relative error in energy is sufficiently
large, the system is more likely to become unstable (see first
experiment, below).



Algorithm 1 SIMULATE(t0,∆t) Simulates a system of
multi-rigid bodies from time t0 to time tf ≤ t0 + ∆t using
the largest possible step size such that impact events are not
missed.

1: h← 0
2: qi+1 ← qi
3: while h ≤ ∆t do
4: tc ← min (max (r(qi+1,vi), hmin), h) . Compute

conservative step
5: if tc > 0 then . See whether simulation can be advanced
6: h← h+ tc
7: qi+1 ← qi + hvi . Integrate position forward
8: else . Contact/impact at the current time
9: v∗i+1 ← v∗i + hfqi+1,vi . Integrate velocity forward

10: vi+1 ← k(v∗i+1) . Apply impact model
11: break
12: return {h, qi+1,vi+1}

IV. EXPERIMENTS

Our experiments use two virtual robotic platforms: the
seven degree-of-freedom passive dynamic walker described
in [8] (simulated in MATLAB) and an 18 degree-of-freedom
quadrupedal robot (controlled using Pacer [28] and sim-
ulated with Moby [11]). Both robots are represented in
minimal coordinates to avoid issues of constraint stabilization
(see [5]) and associated parameter tuning. Contact forces
are computed using the approach described in [12] (treating
the impact model as a contact model, as in [2]); a direct
solver is used to avoid the issues of parameter tuning and
convergence [18] for iterative solvers.
Experimental platforms: We experiment using the virtual
passive dynamic walker because the simulation is highly
accurate (verified to approximately fifteen significant fig-
ures3 using multiple numerical codes) and because it is
straightforward to check how well a solution maintains
energy on this conservative system. We experiment using
the virtual quadrupedal robot because its number of degrees
of freedom and contact geometry (point contacts at the feet)
are comparable to current legged robots and models. When
locomoting, the robot carries out a trotting gait with a step
height of 3 cm; the stance phase of each foot accounts for
75% of the gait cycle duration (0.225 of every 0.3 seconds
are spent in stance phase). The quadruped locomotes on
a planar surface for a duration of five seconds for each
experiment (thirty-three steps).

For simulating our quadrupedal robot, we generally use
a 1 ms integration step, which we determined (before this
present research) yields stable simulations. However, we will
show that we can control the quadrupedal robot effectively at
a mean step size of approximately 2.3 milliseconds (§IV-D)
on certain tasks.
Assessing stability: We assess stability for the passive
dynamic walker using deviation in total energy. We observe
the simulation having a high tendency toward instability

3Personal communication with A. Ruina.

Algorithm 2 SIMULATE-C2A(t0,∆t) Simulates a system of
multi-rigid bodies from generalized position qi, generalized
velocity v, and time t0 to time tf ≤ t0 + ∆t, position
qi+1, and velocity vi+1 using conservative conservative
advancement (C2A) and error control.

1: tci ← min (r(q,vi),∆t) . Compute conservative step
2: h← tci
3: if h < hmin then
4: h← hmin
5: qi+1 ← qi + hvi . Take one Euler step of size h
6: vi+1 ← k(vi + hfqi+1,vi) . Integrate velocity forward

and apply impact model
7: else
8: q′i+1 ← qi + hvi . Take one Euler step of size h
9: v′i+1 ← k(vi + hfq′

i+1,vi
)

10: q′′i+ 1
2
← qi + h

2vi . Take first Euler step of size h
2

11: v′′i+ 1
2
← k(vi + h

2fq′′
i+1

2
,vi

)

12: tc
i+1

2

← min (r(q′′
i+ 1

2

,v′′
i+ 1

2

), h2 ) . Compute new

conservative step
13: if tc

i+1
2

<
tci
2 then

14: tci ← 2tc
i+1

2

15: goto Line 2 . Step not sufficiently conservative

16: q′′i+1 ← q′′i+ 1
2

+ h
2v
′′
i+ 1

2
. Take second Euler step

17: v′′i+1 ← k(v′′i+ 1
2

+ h
2fq′′

i+1
2
,v′′

i+1
2

)

18: E′ ← 1
2v
′
i+1

T
Mq′

i+1
v′i+1 . K.E. after one step

19: E′′ ← 1
2v
′′
i+1

T
Mq′′

i+1
v′′i+1 . K.E. after two half steps

20: eE ← E′ − E′′ . Estimate energy error
21: ev ← v′i+1 − v′′i+1

22: if eE > ε then . See whether simulation can be advanced
23: h← .9|ε|/|eE |h . Scale w/ absolute error tolerance ε
24: goto Line 3
25: t∗ci ← min (s(qi,vi, ev), h) . Compute conservative

conservative advancement (C2A) step
26: if t∗ci < tci then . Check whether conservative step holds
27: tci ← t∗ci
28: goto Line 2
29: qi+1 ← 2q′′i+1 − q′i+1 . Richardson Extrapolation of

position (renormalize any quaternion components)
30: v∗i+1 ← 2v′′i+1 − v′i+1 . Richardson Extrapolation

31: return {h, qi+1,vi+1}

when energy deviates 0.01% from its nominal value. We
build in a safety margin by requiring the model’s total energy
to deviate no more than 0.001% from its nominal value to
remain stable.

The quadruped’s virtual actuators make checking that total
system energy is conserved meaningless. However, we do
use error estimates (computed to first-order accuracy) from
the integration process to assess stability. Like the passive
walker, we observe the simulation having a high tendency
toward instability when local kinetic energy error is estimated
at 0.5% or higher. We build in a safety margin by requiring
the model’s kinetic energy to deviate no more than 0.25%



from its nominal value to remain stable.
We observe that the particular safety margins described

above for integration with error control do not transfer
between models: bounds on relative error that lead to stable
simulations must be determined in the above manner for each
new robot.

A. Testing hypothesis that greater local kinetic energy error
is a proxy for simulation stability

The kinetic energy of a dynamically simulated system will
become unbounded after a simulation has become unstable.
At larger simulation step sizes, a simulated robotic platform
will tend to exhibit instability in fewer steps. We demonstrate
this by measuring the number of steps taken before the
robot’s kinetic energy far exceeds normal values (107 J in
our experiment) under various step sizes. This experiment
used the virtual quadrupedal robot in a simulation with fixed
step sizes ∆t ∈ {1,1.5,1.75,2,3,4,5,6,7,8,9,10} ms). Figure 5
shows that the number of steps a simulator can take before
becoming unstable is negatively correlated with step size.

Fig. 3. Inverse relationship between step size and stability. Failure not
observed for values above bounds of plot.

We conclude that local kinetic energy error can be used
to indicate simulation stability. Controlling the growth of
this error is likely beneficial in stabilizing the simulation of a
dynamic robot: larger simulation step sizes requires combat-
ting energy increases in the robotic system. We demonstrate
one such method that uses exponential dissipation (§IV-E).

B. Testing hypothesis that RK4 is fast enough to make up
for the increased number of steps

Runge Kutta schemes that exhibit fourth order global
error (henceforth denoted RK4) are proven techniques. We
wished to see whether RK4 could lead to faster integration
for legged locomotion applications. This experiment, which
uses the passive dynamic walker model, determines the
largest step size using two explicit integration schemes such
that the deviation in system energy satisfies the tolerances

described in §IV. The maximum step size for explicit Euler
and RK4 integration was determined to be 3.5 × 10−3 and
2.8×10−1 seconds, respectively. RK4 requires four times as
many function evaluations per integration step, so the total
speedup moving from explicit Euler to RK4 is approximately
20.0 times for this model. Our experience indicates that the
integration step size for the Euler integrator lies in the range
commonly used for articulated models.

There is no standard Runge-Kutta approach for time
stepping. The only RK4 approach applied to time stepping
of which we are aware is referred to in [13], but details of
the approach are unpublished. The considerable challenges of
developing any such higher order time stepping schemes are
described in [3]. Assuming that a collocation type approach
(i.e., computing contact forces at all intermediate points over
the integration interval simultaneously) is taken, mathemat-
ical programming variables in the time stepping problem
will grow by a factor of three. If we generously assume
cubic time complexity for solving the linear complementarity
problem (LCP) / nonlinear complementarity problem4, the
extra variables will make one of the most computationally
expensive aspects of the simulation process at least 27 times
slower to solve. Thus, the computation saved by the ability
to take larger steps is similar to the computation required to
solve additional LCPs: higher order integration is likely
not worth the effort of implementation for common
robotic manipulation and locomotion scenarios.

C. Testing hypothesis that symplectic integration does not
yield more stable simulation of non-Hamiltonian systems

Symplectic integrators preserve the numerical Hamiltonian
and are generally are known to produce superior accuracy
and stability for Hamiltonian systems [16]. Stewart notes the
challenges with adapting such schemes to applications with
contact and friction [26]. Regardless, documentation for ODE
(among other software) touts the semi-implicit first-order
scheme—position is integrated using the new velocity, rather
than the old velocity as in the explicit method—as tending
to conserve energy. We ran an experiment to test whether
the semi-implicit Euler algorithm (also known as Störmer-
Verlet and symplectic-Euler [16]) possesses better stability
properties than the explicit Euler integration algorithm on
generic (i.e., not necessarily Hamiltonian) multi-rigid-body
systems with contact; we used the virtual quadrupedal robot
for this experiment.

Algorithm 2 implements a semi-implicit Euler scheme,
which is also a symplectic integrator for Hamiltonian sys-
tems [16]. We ran an experiment against the fully explicit
version of the same integrator by modifying f appropri-
ately (using current positions to compute accelerations) on
Lines 6, 9, 11, and 17 of Algorithm 2. Using both schemes,
we computed the estimated local kinetic energy error over
each 1 ms time interval while simulating a quadrupedal
robot locomoting on a planar environment. Estimated kinetic

4Cottle et al. claim that Lemke’s Algorithm [19] for solving copositive
LCPs generally requires n pivots [9]. Using low-rank updates, this assumes
a best case time complexity of O(n3).



energy errors and total kinetic energy were averaged over
the experiment interval (five thousand samples over five
seconds). Relative errors were calculated at each time step,
then the resulting percentage measurements were averaged
over the duration of the experiment.

We observed that integration with explicit Euler integra-
tion produced a kinetic energy error of 1.2306×10−4 J out of
a total 0.13494 J on average (mean 0.77389% relative error at
each time step) for the walking robotic system. We compared
these results against semi-implicit integration, which pro-
duced a kinetic energy error of 1.5029×10−4 J out of a mean
total 0.12875 J (mean 1.3904% relative error at each time
step). Using an explicit Euler first order integration scheme
resulted in nearly half the average relative error, though the
difference is minor in absolute terms. In conclusion, we find
that explicit Euler integration may increase simulation
stability over semi-explicit Euler integration.

D. Testing hypothesis that integration with error control only
yields improvements in running time for slow-moving robotic
systems

We used the quadrupedal robot model for this experiment
and disabled the C2A process to determine an upper bound
on improvements in running time: the knowledge that the
ground is planar precludes tunneling phenomena. We set
5 ms as the nominal step size and 0.5 ms to be the minimum
step size limit (hmin). Algorithm 2 was then used to select
the largest time step to take at each simulator iteration such
that local kinetic energy error remains within tolerances. We
set the experimentally-derived local kinetic energy relative
error limit at 0.25% for these trials. Step size selection was
managed by Algorithm 2. About two thousand simulation
steps were taken to simulate five seconds of walking and
standing.

The mean step size was 2.3427 ms while using Algo-
rithm 2. Analysis indicated that the stability of the simulation
was limited by the robot’s feedback control system perform-
ing poorly in the presence of significant errors; in other
words, the control system (not the robot dynamics) reduces
stability. Over intervals consisting of the robot walking, error
control yielded a mean step size of 2.1646 ms. This data
tells us that 1 ms is a reasonable time step for this robot,
which is consistent with our experience with this model. We
quantify the simulation stability when the robot is in motion
in Figure 4. We found that simulation stability decreases
substantially when the robot is taking a step versus standing
in place (indicated by an increase in estimated local kinetic
energy error during the stepping portions of the trotting gait).

Finally, given the extra computation required by these
methods, integration with error control is unlikely to
result in significant speed increases even on less dynamic
robots, and the possibility of increased computation time
as well as software bugs from additional implementation
complexity make it hard to recommend investigating such
approaches further.

Fig. 4. Simulation stability (inversely proportional to relative, local kinetic
energy error) decreases when the quadruped is in motion versus standing
in place. Data is presented over one gait cycle ({ step, stand, step, stand}).
Simulation stability is reduced during a step, but remains high when the
robot is stationary.

E. Testing hypothesis that exponential dissipation can in-
crease step size considerably

Given the relationship between dynamic stability of ODEs
and numerical stability of algorithms for solving them, it is
clear that one can use mechanisms for energy dissipation to
increase stability. We showed earlier (§IV-A) that instability
introduced by taking larger step sizes is correlated with
increasing kinetic energy. We hypothesize that dissipating
this energy will allow us to take larger step sizes, leading
to faster simulation at the cost of accuracy. We wished to
test the hypothesis using an exponential dissipation function.
The function is simple: after every Algorithm 1 or 2 call,
the generalized velocity is scaled by λ ∈ [0, 1] (where
λ = 0 is equivalent to no dissipation and λ = 1 brings
the system to rest instantaneously). We used this approach
after experimenting with Rayleigh dissipation [15], which
produced less dramatic results and uses a less intuitive
parameterization.

We simulated the quadrupedal robot with exponential
dissipation coefficients λ ∈ {0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1}. We simulated the walking quadruped
with a fixed step size of 0.005 (unstable with no dissipation,
see Figure 5) and counting the number of iterations until
failure (triggered when kinetic energy exceeds 107 J).

We observed that adding dissipation to an actuated
multi-rigid-body simulation leads to increased stability
and allows us to take larger integration steps, which
lends evidence to our hypothesis (see Figure 5). These
results indicate that dissipation provides a beneficial tradeoff
between stability and accuracy. Furthermore, we assume that
this tradeoff can be used to speed simulation of dynamically
controlled robots at the cost of some accuracy.



Fig. 5. Relationship between exponential dissipation and simulation
stability for the walking quadruped simulated at steps of 0.005 s. Failure
is not observed for values above vertical bounds of plot.

V. CONCLUSIONS

We identified local kinetic energy error as a useful proxy
of simulation stability for dynamically moving robots and
presented an algorithm for adaptively adjusting simulation
step size to satisfy a constraint on local kinetic energy error.
We observed that reducing kinetic energy through dissipation
may be a viable strategy for speeding simulation at the cost
of some physical accuracy.

VI. FUTURE WORK

Future work will focus on verifying mathematically that
our algorithm converges smoothly to the continuous time
solution as step sizes decrease.
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