Analysis of Grasping Failures in Multi-Rigid Body Simulations

James R. Taylor!, Evan M. Drumwright?, and John Hsu?

Abstract— Rigid body simulation libraries are sophisticated
software systems that include multiple, tricky to implement
numerical algorithms: solving initial value problems, root
finding, geometric intersection (collision detection) and contact
determination, and solving mathematical programming and
optimization problems. How and why such systems fail to
produce expected behavior is not readily known and not easy to
discern; few of the components described above use reference
implementations or are modular, for example, which makes
attempting to identify points of failure challenging. Additionally,
most libraries present an extraordinary number of parameters
to be tuned, which complicates assessment.

For the field of robotics, such failures are frustrating. One
of the most seminal tasks in the domain, grasping of rigid
objects, can require considerable parameter tuning. This paper
uses a recent development, the support of four open-source
physics engines in the GAZEBO simulator, to assess the ability
of simulated robots to maintain grasps of rigid objects. We
develop a metric that captures grasping performance and run
a multitude of experiments to ascertain causes of failure.
We have made all of our experimental code and data freely
available, which allows others to reproduce our results and the
authors of the corresponding physics engines to compete toward
maximizing performance on the grasping task.

I. INTRODUCTION

Researchers and software developers periodically release
new multi-rigid body simulation libraries with promises
of improvements in speed and accuracy over the previous
state of the art. And yet, problems with simulations persist:
systems ‘“‘exploding”, robots vibrating at high frequency,
bodies interpenetrating, and robots generally operating in
an unexpected manner. Have simulation libraries actually
been getting better, specifically with respect to robotics
applications? If so, how much better are these new libraries?
This paper represents the beginning of an objective effort to
answer these questions.

Every simulation library is the product of a series of design
decisions, including direct vs. iterative mathematical pro-
graming/optimization solver, geometric representation, coor-
dinate type (reduced or absolute), and simulation paradigm
(penalty-based, piecewise differential algebraic equation-
based, time stepping). Exactly how any of these decisions
affects a particular scenario or task or a class of scenarios or
tasks has yet to be established, making objective comparison
and evaluation of simulators extremely difficult. This paper
focuses on a particular scenario and task that is ubiquitous
in robotics: grasping of quasi-rigid objects with rigid robots.

1George Washington University, Washington, DC 20052, USA
jrt@gwu.edu

2Toyota Research
drum@tri.global

3Open Source Robotics Foundation, Mountain View, CA 94040, USA
hsufRosrfoundation.org

Institute, Palo Alto, CA 94306, USA

Stable quasi-rigid grasping is an anecdotally challenging
task to simulate, and potential causes of failure are numerous:
constraints are subject to numerical drift; truncation error
arising from terminating an iterative method early can cause
slip, and “jitter” due to correcting bilateral constraint errors
and interpenetration can transmit excessive forces through
the multi-body system (used henceforth to refer to the
combination of the robot and grasped object).

This work uses an open test platform, GAZEBO version
4.0, to directly compare the performance of four existing
multi-rigid body simulators on the aforementioned grasping
task. GAZEBO’s broad adoption and its support for multiple
dynamics libraries make it well-suited for the comparison:
the experimenter can ensure that the same model is used
across all simulators. GAZEBO’s ongoing support means that
the experiments detailed in this paper can be maintained
online and their results updated as software improves (or
even regresses). As of this publication, GAZEBO supports
the Open Dynamics Engine (ODE), BULLET physics, the
Dynamic Animation and Robotics Toolkit (DART), and
SIMBODY.

This paper considers two grasping scenarios: (1) a simu-
lated robot arm moving through a trajectory while maintain-
ing a grasp using a parallel gripper; and (2)a simulated fixed
parallel gripper attempting to maintain a grasp on multiple
objects simultaneously. The arm model used in the former
scenario is a hybrid of the Universal Robotics UR10 arm,
sourced from an existing ROS package and mated to a model
of the Schunk MPG-80 parallel gripper. This configuration
represents a reasonably accurate model of an industrial arm
with respect to kinematics, geometry, and dynamics. On the
other hand, the model used in Scenario (2)is contrived: a pair
of boxes represent the parallel jaw gripper. The “robots” used
in both scenarios are depicted in Figure 1.

Finally, we note that this paper does not try to answer
the question of which software library may be superior. All
libraries tested are actively developed and performance is
subject to change, often dramatically, as bugs are introduced
or corrected and new techniques are tested. It is also conceiv-
able that GAZEBO contains bugs in the interfaces to one or
more libraries. This paper instead focuses on understanding
the factors that can contribute to grasping performance
in simulation and providing a metric for evaluating grasp
performance in simulation.

II. BACKGROUND ON MULTI-RIGID-BODY
SIMULATIONS

Every simulation library is the product of many design
decisions. This section discusses the most salient such de-

cisions, as judged by GAZEBO’s currently supported multi-
rigid body simulators and other available open source simu-
lation software.

A. Simulation paradigm

Brogliato et al. [3] broadly categorize rigid body dynamics
simulation software into three paradigms: event driven, time
stepping, and penalty-based. Penalty methods treat contact
using virtual springs and dampers. The resulting system
of equations of motion can be integrated forward directly
using arbitrary integration schemes, though implicit inte-
grators are often recommended to avoid issues with the
“stiff” equations that can result. Event driven methods (i.e.,
piecewise differential algebraic equation-based approaches)
integrate the equations forward in time until an impact
(“the event”) occurs; the impact is modeled and the simu-
lator resumes integrating the equations forward until further
events are detected. Time-stepping methods, which are based
around differential variational inequality (DVI) mathematical
models, can avoid the need to locate events precisely by
collecting all of the events that may occur during a time
interval into a single complementarity problem. By solving
a single such problem, time-stepping can allow systems with
many contacts or impacts happening over a small period of
time (e.g., a pool break) to be simulated more quickly.

B. Coordinate type

Articulated bodies can be defined using absolute coor-
dinates (i.e., six coordinates per link) or independent co-
ordinates (i.e., six coordinates per link minus the number
of bilateral joint constraint equations). The former is used
in several pieces of open source software (including ODE
and BULLET), likely because of ease of implementation.
However, absolute coordinates require constraint stabilization
(e.g., Baumgarte stabilization [2]) to be used to minimize
robot links from unrealistically separating at joints.

Constraint stabilization is also used to separate interpene-
trating bodies. The bodies may interpenetrate due to non-
convergent iterative solves (see §II-C) or inability of the
collision detection system (see §II-D) to find precise times
of contact. Interpenetration is also an organic byproduct of
time stepping simulation processes.

C. Solver type

The bilateral (joint) and unilateral (contact and joint limit)
constraint equations must be solved for constraint forces
that obey compressive, non-interpenetration, frictional, and
complementarity constraints; GAZEBO’s supported simula-
tors pose these constrained optimization problems as either
nonlinear or linear complementarity problems. If the latter,
either a direct (pivoting [5]) or iterative (matrix splitting
method [17]) can be used. The only available solver for NCPs
at this time is PATH [6]. For LCPs, the iterative Projected
Gauss Seidel method seems to work reasonably in practice.
However, convergence to a solution is not guaranteed; both
Lacoursieré [15] and Drumwright and Shell [8] found these
methods yield inaccurate solutions; Lacoursieré showed that

for matrix condition numbers greater than 107, the method
is unusable and that the method also “‘stagnates”.

Direct solvers are limited too. Accuracy is significantly
higher than with iterative methods (see [8]), but the lin-
ear system solves required of pivoting operations limit the
practical number of variables to on the order of 10,000,
both due to compuational complexity and available memory.
The maximum number of variables is limited even further
by the rounding error that accumulates during the pivoting
process; the LEMKE [10] library limits the number of pivots
to min (50n, 1000) for this reason.

Some simulation approaches enforce constraints by solv-
ing optimization problems rather than complementarity prob-
lems: see [9], [25] for examples. While these approaches
are being actively investigated, GAZEBO does not currently
support any simulators using such techniques, which removes
a point of comparison. Our intimate knowledge of these
approaches leads us to postulate that grasping performance
would be affected little using an optimization based ap-
proach, but such a comparison will require future investi-
gation.

D. Collision detection

There are few collision detection libraries that provide
contact points and normal data; most such libraries only
test whether two shapes are intersecting. There are multiple
ways to compute contact points and normals (see, e.g., [12],
[7]1), which can depend on the geometric representation
(primitive types, constructive solid geometry, polyhedron,
implicit surface, or triangle mesh).

Finding correct contact data is complicated because two
geometries are unlikely to be “kissing” due to floating point
arithmetic, and because contact points and normals can only
be estimated when bodies are interpenetrating. The estima-
tion can conceivably be prevented by tracking the movement
of the contact surface over time, but we are unaware of
an existing open-source simulator that has implemented this
idea.

E. Quasi-rigid DVI-based contact

Lacoursieré’s dissertation [16] described a relationship
between the complementarity problem regularization and
constraint stabilization parameters and a first-order spring
and damper model. This relationship indicates that contact
constraints between rigid bodies can be effectively modeled
as quasi-rigid in place of the fully rigid contact previously
considered by DVI-based methods. We use the term quasi-
rigidity to indicate that contacts between bodies are treated,
at least partially, using spring-and-damper terms. We label
those models with deformation along the tangent plane of the
contacting surface between two bodies as fully compliant;
this term would encompass both traditional finite element
models and the penalty type model of [21].

F. Multi-rigid body verification and validation

This work continues our research into correctness of
multi-body dynamics simulation using verification and val-
idation [24], [4]. Where verification examines the solution

accuracy of our numerical implementation, validation seeks
to reproduce behavior observed in situ. The present work thus
focuses on validation because manipulators grasping blocks
has certainly been observed in situ.

III. FAILURE MODES FOR QUASI-RIGID
GRASPING

Objects slipping from a simulated robot’s grasp can occur
for several reasons, described below.
slip: If the grasping force or friction coefficient is not large
enough for force closure. This case is the only one that is
not an artifact of the simulation software.
iterative method non-convergence: Iterative methods are
often terminated early; non-convergence can cause slip to
occur at points of contact, joints to move apart unrealistically
(thereby, for example, causing one or more gripper fingers
to separate from the grasped object), or interpenetration
to occur (which could cause objects to drop or become
entangled [20]).
rounding error: Rounding error can occur even with direct
solvers, leading to all of the problems described immediately
above, though with lesser severity expected in this case.
regularization error: Regularizing the complementarity
problem (via, e.g., the “constraint force mixing” parameter
in ODE), causes constraint violation, which can lead to all of
the issues described under iterative method non-convergence.
constraint stabilization: Projection methods (used in RPI-
SiM, ODE, BULLET, and DART) for correcting joint con-
straint errors and interpenetration are prone to adding energy
to the multi-body system [22] (which, among other issues,
can compromise simulation stability).
imprecise contact information: As §II-D intimates, correct
algorithms—and even precise problem specifications—for
determining contact data have yet to be established. The gen-
eral effects of inaccurate points of contact, normals, or both
is currently unknown. The effects of approximating by point
samples a polygonal or nonlinear manifold corresponding
to the locus of intersection between two contacting bodies
is also unknown. Contacting shapes between the bodies
considered in the present research are convex polyhedra,
meaning that bodies will not interpenetrate if the contact
constraints are not violated on the convex hull of the contact
manifold. This fact permits ignoring the effects of point
sample approximation in the present work.
tangential drift: Although interpenetration and bilateral
constraint errors are addressed by constraint stabilization, we
are unaware of any multi-rigid body simulation libraries that
stabilize constraint drift in the tangential direction, which
would require tracking the evolution of the contact manifold
as two bodies move. Without addressing such drift, we expect
manipulated objects to gradually slip out of grasp.

We determined the factors above from reasoning about
how multi-rigid body simulation software functions. How-
ever, teasing apart which of these factors is responsible is
not the focus of the present paper. Indeed, evaluating even
a single factor independently is impractical with most of
the simulators that we evaluated. Instead, this paper applies

multiple simulation libraries to test hypotheses (see §V) using
the spectrum of available multi-rigid body dynamics software
libraries.

IV. EXPERIMENTAL PRELIMINARIES

This section covers the evaluated simulators (§IV-A), the
tasks (§IV-B), the performance metric used (§IV-C), and the
description of the experimental controls (§IV-D).

A. Simulators

We assessed every simulation using an integration step
size of 0.001. We found anecdotally that smaller step sizes
produced better grasping performance (as expected), though
our focus in this work is on factors that affect grasping
performance independently of integration step. We conducted
this investigation because reducing the step size leads to
considerably slower simulations (e.g., simulations integrated
at 1074 generally run an order of magnitude more slowly
than those running at 10~3).

1) ODE: The version of OPEN DYNAMICS ENGINE
(ODE) that we tested has been modified by Open Source
Robotics Foundation to correct interpenetration by attempt-
ing to project bodies to a disjoint configuration (see [14]
for details). ODE uses a slightly modified version of the
first-order time stepping method described by Stewart and
Trinkle [23] and Anitescu and Potra [1] with constraint stabi-
lization procedure following the approach described in [13].
ODE uses absolute coordinates and supports both primitive
and triangle mesh geometric types. GAZEBO 4.0’s interface
to ODE uses an iterative solver only, though “vanilla” ODE
supports a direct solver.

2) BULLET: The version of BULLET we tested (2.82)
also uses a time stepping approach; BULLET supports in-
dependent coordinates, though only absolute coordinates
are supported in current versions of GAZEBO. Like ODE,
BULLET also uses an iterative solver and supports both
primitives and meshes; our examination of the source code,
interface, and discussion groups indicate that ODE and
BULLET function very similarly at the multi-rigid body
dynamics level. However, BULLET also includes code for
simulating soft bodies, fluids, and particles (none of which
are used in the present study).

3) DART: We tested DART version core-4 1.1.0, which
uses an independent coordinate formulation and the Stewart-
Trinkle/Anitescu-Potra time stepping approach. DART uses
a direct, mixed linear complementarity problem solver
(specifically, ODE’s Dantiz-Cottle LCP solver) and a triangle
mesh geometry representation. DART uses a polygonalized
friction cone for contact, thereby following the Stewart-
Trinkle/Anitescu-Potra contact model more faithfully than
the approximate pyramidal friction model used by both ODE
and BULLET. We had to modify GAZEBO 4.0 to allow us to
change the Coulomb friction coefficient in DART.

4) SIMBODY: SIMBODY version 3.4 uses a considerably
different paradigm than the other physics engines in these
experiments. SIMBODY uses a quasi-rigid contact model (to
permit modeling the human skeleton, muscles, and skin)

that follows the event-driven paradigm in place of the time
stepping approaches used by ODE, BULLET, and DART.
SIMBODY proved to be too slow to conduct the numerous
requisite experiments (simulating a single grasping scenario
required on the order of days, i.e., in the same timeframe
as FEM-based simulations). This elimination is unfortunate
because SIMBODY’s focus has been on accuracy, while the
other simulations described above have targeted low running
time. SIMBODY’s performance does make it clear why the
present work focuses on rigid body dynamics in place of
more accurate FEM-type deformable codes, for which the
remainder of the libraries described in this section can simu-
late the scenarios in minutes: considerably longer simulation
times preclude model predictive control, fast edit-compile-
test cycles, motion planning, and similar applications of
multi-body dynamics simulation to robotics.

5) RPI-SiM: The multi-block grasping example was suf-
ficiently simple that we were also able to set up the example
in RPI-S1M (Subversion revision 463). RPI-SIM supports
pivoting solvers (Lemke’s Algorithm); a popular iterative
matrix splitting method (Projected Gauss Seidel); and PATH
[6], a popular library for solving complementarity problems
(which operates using Lemke’s Algorithm for LCPs with few
variables and via a Newton-based method more generally).
RPI-SiM uses the first-order Stewart-Trinkle/Anitescu-Potra
method with the stabilization approach described in [13].

B. Tasks

The experiments using both grasping tasks, each of which
is described immediately below, begin with the grasped
object lodged firmly in the gripper: no grasp planning, pre-
grasping, efc. were necessary in any experiment.

1) Grasp with industrial arm: We acquired a model of
the UR10 robotic arm (depicted in Figure la) from the
ROS Industrial repository and converted it to GAZEBO’S
SDF format. We attached this model to a model that we
constructed of the Schunk MPG-80 hand, using CAD files
and technical schematics from the manufacturer. The mated
UR10/MPG-80 model yields a 8-DoF system (6-DoF arm
+ 2-DoF gripper). The inertial properties for the Schunk
hand were set by approximating the bounding volume of
the palm assembly and the individual fingers with boxes and
apportioning the mass of the palm to be 80% of the total
mass (described in the hand schematics); each of the two
fingers were assigned the remaining 20% of the total mass.
The box approximations were used for collision geometries
in the geometric primitive experiments and the CAD meshes
were used for collision geometries in the tessellated mesh
experiments. The gripper prismatic joints were constrained
by joint limits derived from the stroke per finger (defined
in the schematics). Each gripper is actuated toward closure
with 100N of force, which should be sufficient to maintain
force closure on even relatively massive objects.

The object to be grasped was modeled as a simple cube
with equal dimensions of 100mm. This yields a primi-
tive/primitive representation, which we hypothesized would
yield more robust grasping than using primitive/mesh or

mesh/mesh-based experiments. A “collision box” was used
for the geometric primitive experiments; for the tessellated
mesh experiments, a mesh was generated in BLENDER using
the same dimensions as the cube. The mass of the object to
be grasped was set to 1 kg, and its inertia tensor was derived
from a box with given dimensions and mass.

The arm controller was designed to move the arm through
randomized sinusoidal trajectories for all joints using PD-
control. The amplitude of each sinusoid was tuned to be as
large as possible without the arm colliding with either itself
or the ground plane. As noted above, the prismatic joints
controlling the grippers applied 100N of constant force.

2) Block grasp: The block grasp scenario consists of a
simple manipulator with a fixed base and a pair of parallel
grippers (see Figure 1b). Each gripper is modeled as a box
with dimensions larger than the grasp object and with a mass
of 1 kg. Each gripper is actuated toward closure with 100N
of force per block.

The object to be grasped is the same as used in the
industrial arm experiment, i.e. 1/1000m?® with 1kg mass.

(a) b)

Fig. 1: The UR10 arm with Schunk hand used in the Grasp with industrial
arm experiment (a) and the block gripper with eleven objects to be grasped
used in the multi-block experiment (b). In both images, grasped objects are
shaded in green and in (b) the grippers are shaded in blue.

C. Metric

Selecting a metric for identifying effective grasping per-
formance proved challenging because our focus is only the
qualitative behavior of keeping the object within the gripper.
Comparing telemetry data against, e.g., control commands,
would not be indicative of simulation performance as the
robot might be observed to maintain a perfect grasp while the
end-effector deviates from its commanded path. We devised
a work-type metric to capture the qualitative behavior we
sought. Specifically, we use a first-order approximation to
the kinetic energy necessary to restore the grasped object
to its initial pose relative to the grippers. This formula is
described below:

R R S

T= 2m'v v+2w Jw (D
Tt —x

= ¥ — a 2

v A7 + (z* — %) ()
=2 0" -6

w =2G(AL)+ () 3)

*

x* and z in Equation (2) are the desired and current
position of the grasped object, £* and x in Equation (2)
are the desired and current linear velocity of the grasped

object, g* and q in Equation (3) are the desired and current
orientation of the grasped object (in unit quaternions), and
6* and 6 in Equation (3) are the desired and current angular
velocity of the grasped object. The difference between the
unit quaternions is converted to an angular differential using
well known formulas; we use one such formula to determine
G, which is defined with respect to g (see, [18], p. 175).

Each desired configuration is defined with respect to the
grasped object’s initial configuration. Velocities are defined
relative to the gripper’s velocities. The inertia tensor of the
block, J’ is defined relative to the grasped object body
frame and is transformed to the world frame by operation
J = RJ'RT where R(q) is the grasped object’s orientation
matrix. All other variables described in the equations above
are defined relative to the global frame.

For each iteration, we compute the metric 7" of all grasped
objects with respect to both the left and right grippers;
those values are then averaged to yield a single value. The
simulation was terminated if the simulation time reached 100
seconds or the metric exceeded 107 units (the simulation
configurations lack a ground plane, so an object that slips
from a grasp causes the metric to quickly exceed 107).
Other invalid configurations, such as possible locking of
models due to interpenetration (see [20] also) were noted,
but otherwise not objectively measured; however, our metric
does penalize interpenetration in a stable grasp compared
to stable grasps with no interpenetration. Finally, note that
T = 0 when the relative configuration between the object
and the grippers matches the initial relative configuration.

D. Experimental controls

The experimental controls consisted of each of the three
simulators (four in the case of the multi-block experiment)
listed previously using GAZEBO’s default parameters. We do
tune one simulator—ODE, which was GAZEBO 4.0’s best
supported simulator—to show that it is possible to improve
on these parameters significantly for this task; however, we
also wished to establish a performance baseline. GAZEBO’s
default parameters have been determined using domain
knowledge to maximize performance (speed and accuracy)
over numerous simulation models and environments.

The models used in the experimental controls used real-
istic inertial values for all rigid bodies. Primitive geometric
boxes were used to model the grippers and grasped objects.
Coulomb friction coefficients were set to 100.0, which is
significantly higher than that considered to be natural but
ensures that the models contact without slip (in theory, if not
implementation). Examination of multiple published friction
tables indicates that 1.0 acts as an effective upper limit,
though values larger than 1.0 are compatible with Coulomb’s
friction model.

V. TESTED HYPOTHESES
A. Hypothesis 1: modifying inertia properties could lead to

improvements in grasping performance

It is accepted in the multi-body dynamics simulation
community that large discrepancies in mass ratios lead to

lower simulation performance. Such discrepancies cause ill-
conditioning of the manipulator inertia matrix', given Feath-
erstone’s analysis [11] that showed that the condition number
of this matrix grows up to O(n*) in the number of links in
a robot and is also dependent on variations in link inertia
(among other factors). This ill-conditioned inertia matrix may
be viewed as a source of stiffness in the underlying differ-
ential equations [19], thereby affecting simulation stability.
However, we guessed that grasping performance might be
affected as well.

We tested this hypothesis by comparing performance for
the experimental control against a robot model with modified
robot arm and gripper link inertias (for the UR10). We
assigned the shoulder link a mass of 1kg and inertia matrix
of identity. Each subsequent link in the chain would have its
inertial properties scaled geometrically (i.e., the second link
would be scaled by 1/z, the third link would be scaled by
1/22, etc.) We experimented with scaling factors between
1.0 and 10.0.

B. Hypothesis 2: increasing the friction coefficient to very
large values will not reduce grasping performance

While setting the Coulomb friction coefficient to a large
value (i.e., larger than 1.0) will not generally yield a realistic
simulation, there exists numerous anecdotal accounts of
simulation users setting friction coefficients to particularly
large values to prevent slipping at contacts. We tested the
hypothesis above to see whether particularly large values of
1 would reduce the numerical stability of the pivoting LCP
solvers; we would expect the condition number of the LCP
matrix (see [1] for the matrix’s structure) to increase pro-
portionally with p. For testing the hypothesis, we modified
the friction coefficients between contacting models in our
experimental group by using a friction value of j = 108,

C. Hypothesis 3: using primitive geometries in place of mesh
geometries yields improved grasping performance

Historically, modeling contacts between bodies repre-
sented using ubiquitous mesh-based geometries (e.g., triangle
mesh) has proven challenging. We wanted to test whether this
effect was present in the evaluated simulation software. In
cases where multi-rigid body dynamics libraries supported
both mesh and polyhedral representations (i.e., ODE and
BULLET), we varied the representation of the grippers, of
the object, and both. The evaluated groups were then (1)
polyhedral grippers, polyhedral object; (2) polyhedral grip-
pers, mesh object; (3) mesh grippers, polyhedral object; and
(4) mesh grippers, mesh object.

D. Hypothesis 4: pivoting LCP solvers are more effective at
simulating grasping than iterative matrix splitting solvers

This hypothesis follows from past research that has found
that pivoting solvers are considerably more effective at solv-
ing LCPs (corresponding to multi-rigid body contact prob-
lems) with tens of variables to high degrees of accuracy [8].

! Although such a matrix is not explicitly constructed within all simulators,
the conditioning of that matrix should yield a measure of numerical stability.

We speculated that a scenario with low admissibility for error
would be more likely to expose this difference. Figure 1b
illustrates this scenario, for which even one block slipping
would likely lead to catastrophic failure. The experimental
variable for testing this hypothesis was the number of blocks
in the grasp, which varied from one to eleven.

VI. RESULTS FROM EXPERIMENTATION

The experiments generated significant data,
including numerous plots and videos, which are
available at our repository (https://github.com/
PositronicsLab/grasp—-data). Plots of control
performance for the industrial arm and multi-block
performance are depicted in Figures 2 and 3.

Fl’ggimitive Block/Primitive Hand Collision Geometry (High Friction)
— ode (default)
— dart

108 — bullet
—— ode(tuned)

= = =
=) S =%

Kinetic Energy

2‘0 30 4'0 5
Simulation Time

Fig. 2: Metric performance for the industrial arm grasping experimental
control over three simulators (ODE, BULLET, and DART). BULLET
becomes unstable immediately. ODE is able to maintain a stable grasp for
nearly a second of virtual time. DART is able to maintain a stable grasp
for nearly 35 seconds.

1 Block Grasp (High Friction)

— ode (default)
— dart
100k — bullet
—— ode(tuned)

Kinetic Energy

1

10 10 40 50

20 . . 30
Simulation Time

Fig. 3: Metric performance for the multi-block grasping experimental con-
trol (using a single block) over three simulators (ODE, BULLET, DART).
BULLET becomes unstable immediately. DART (and to a lesser extent,
ODE) exhibits a concerning discontinuity in performance, but generally is
able to maintain a grasp for the length of the experiment. ODE maintains
a stable grasp.

The data indicates the following responses to the hypoth-
esis presented in the previous section.
Does altering inertial values affect grasping performance
(Hypothesis 1)?: Yes. Unit mass / inertia yields significantly
better grasping performance compared to the control group

with realistic inertias (as depicted in Figure 4). Any integer
scaling factor reduces the performance significantly worse
than the control. These results indicate that simulation users
must take care in setting inertial values, even for this task
for which simulation stability does not seem to be a factor.

Inertial Modification (High Friction)

— ode (default)
— dart
108 — bullet
— ode(tuned)

Kinetic Energy

0 &
Simulation Time

Fig. 4: Metric performance for the industrial arm grasping experiment over
three simulators (ODE, BULLET, and DART) using modifications to inertial
values. Grasping performance is improved significantly in two simulators
compared to the depiction in Figure 2.

Do very high friction coefficients yield less stable simula-
tions (Hypothesis 2)?: No. Our experiments (and Figure 5)
indicate that a high friction coefficient (1 = 10%) does not
affect the stability of the simulations.

1 Block Grasp (‘Infinite' Friction)

— ode (default)
— dart
105k — bullet
— ode(tuned)

10°F

Kinetic Energy

10 2_0 .) 30 40 5
Simulation Time

Fig. 5: Metric performance for the multi-block grasping experiment (using
a single block) and very high friction value over three simulators (ODE,
BULLET, and DART). Performance appears identical to Figure 3.

Does using mesh geometries impact grasping perfor-
mance (Hypothesis 3)?: Yes. Both tested versions of DART
and BULLET “‘segfaulted” with tessellated geometry. ODE
drops the grasped object nearly immediately. We recommend
using primitive type geometric representations in these sim-
ulation libraries whenever possible; aside from maximizing
the performance metric in our experiments, the software
implementations for primitive geometries have anecdotally
proven to be far more robust.

Does the iterative solver fail readily on the grasping tasks
(Hypothesis 4)?: No. Surprisingly, the lack of convergence
proofs for the iterative LCP solver [15] and the much poorer
solution performance [8] does not translate to challenges with

grasping. Instead, we have found that the iterative solver
performs better than the pivoting solver on the sensitive
grasping scenario that we devised (see Figure 6).

Multiple Block Gr'asp‘ Kin‘etic‘ Energy

1014 . N ode (default) [
= dart

0 102} = bullet
4 [0 ode (tuned)
8 101 =1 rpi (direct)
o = rpi (indirect)

8
= 107
< 6
“— L
5 10
P Can
o) 10
]

2
2 10
w
v 10°f
B 10
< 1071
X gt
—

10°
8 I

1 2 3 4 5
Number of Blocks

Fig. 6: Logarithmic inverse metric performance for the multi-block
grasping experiment, illustrating direct vs. iterative solver performance at
the end of 0.3s of virtual time. Taller bars indicate better performance. A
missing bar (see, e.g. rpi (direct) for 11 blocks) indicates failure.

Does a particular simulation library outperform others
across the board?: While we prefer not to address this
question for reasons described in §I, we understand that
readers will ask it. With the caveats in that section in mind,
DART generally outperformed ODE under our metric; this
performance differential could be due to many factors (pivot-
ing method vs. iterative, accuracy of friction cone approxima-
tion, generalized coordinates vs. absolute coordinates). One
key observation: ODE was able to simulate all scenarios,
even if it does not always yield the highest performance; the
library crashed less frequently than others, as the software
has remained quite stable. BULLET performed surprisingly
poorly, which Erwin Coumins (the lead developer) attributed
to the particular version we examined (BULLET undergoes a
fairly aggressive release schedule) as well as possible bugs in
the GAZEBO-BULLET interface, in personal communication.

VII. CONCLUSIONS

Our experimental results make clear that analyzing quasi-
rigid grasp failures in multi-rigid body simulation software is
not a trivial problem. Software quality and design decisions
can both affect grasping performance; the latter’s effect is
not necessarily predictable, as, for example, the results from
testing our fourth hypothesis indicate. Our results point
to new research efforts as well. Why do splitting matrix
iterative LCP solution methods work better on the multi-
block grasping scenario? What is the mechanism by which
“regularizing” the inertia matrix values leads to more stable
grasping performance? Can there be an effective middle
group between primitive geometric representations (which
are fast to evaluate and less challenging to code) of objects
and mesh based representations (which are slow and chal-
lenging to code but for which formats are ubiquitous and
shapes are generalizable)?

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
(1]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

M. Anitescu and F. A. Potra. Formulating dynamic multi-rigid-body
contact problems with friction as solvable linear complementarity
problems. Nonlinear Dynamics, 14:231-247, 1997.

J. Baumgarte. Stabilization of constraints and integrals of motion in
dynamical systems. Comp. Math. Appl. Mech. Engr., 1:1-16, 1972.
B. Brogliato, A. A. ten Dam, L. Paoli, F. Génot, and S. Abadie.
Numerical simulation of finite dimensional multibody nonsmooth
mechanical systems. ASME Appl. Mech. Reviews, 55(2):107-150,
March 2002.

B. Cheng Yi and E. M. Drumwright. Determining contact data for time
stepping rigid body simulations with convex polyhedral geometries.
In Proc. Intl. Conf. on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR), San Francisco, CA, 2016.

R. W. Cottle, J.-S. Pang, and R. Stone. The Linear Complementarity
Problem. Academic Press, Boston, 1992.

S. P. Dirkse and M. Ferris. The PATH solver: A non-monotone sta-
bilization scheme for mixed complementarity problems. Optimization
Methods and Software, 5:123-156, 1995.

E. Drumwright. A fast and stable penalty method for rigid body
simulation. IEEE Trans. on Visualization and Computer Graphics,
14(1):231-240, Jan/Feb 2008.

E. Drumwright and D. Shell. Extensive analysis of linear comple-
mentarity problem (LCP) solver performance on randomly generated
rigid body contact problems. In Proc. IEEE/RSJ Intl. Conf. Intelligent
Robots and Systems (IROS), Vilamoura, Algarve, Oct 2012.

E. Drumwright and D. A. Shell. A robust and tractable contact model
for dynamic robotic simulation. In Proc. of ACM Symp. on Applied
Computing (SAC), pages 1176-1180, 20009.

P. L. Fackler and M. J. Miranda.
http://people.sc.fsu.edu/ burkardt/m_src/lemke/lemke.m.
R. Featherstone. An empirical study of the joint space inertia matrix.
The Intl. J. of Robotics Research, 23(9):859-871, September 2004.
E. Guendelman, R. Bridson, and R. Fedkiw. Nonconvex rigid bodies
with stacking. ACM Trans. on Graphics, 22(3):871-878, 2003.

S. Hart, R. Grupen, and D. Jensen. A relational representation for
generalized knowledge in robotic tasks. Technical Report 04-101,
Computer Science Dept, Univ. of Massachusetts Amherst, 2004.

J. M. Hsu and S. C. Peters. Extending open dynamics engine for the
DARPA virtual robotics challenge. In Proc. Simulation, Modeling,
and Programming for Autonomous Robots (SIMPAR), 2014.

C. Lacoursiere. Splitting methods for dry frictional contact problems
in rigid multibody systems: Preliminary performance results. In
M. Ollila, editor, Proc. of SIGRAD, pages 11-16, Nov 2003.

C. Lacoursiere. Ghosts and Machines: Regularized Variational Meth-
ods for Interactive Simulations of Multibodies with Dry Frictional
Contacts. PhD thesis, Umeé University, 2007.

K. G. Murty. Linear Complementarity, Linear and Nonlinear Pro-
gramming. Heldermann Verlag, Berlin, 1988.

P. E. Nikravesh. Computer-Aided Analysis of Mechanical Systems.
Prentice Hall, 1988.

F. A. Potra, M. Anitescu, B. Gavrea, and J. Trinkle. A linearly implicit
trapezoidal method for stiff multibody dynamics with contact, joints,
and friction. [Intl. Journal for Numerical Methods in Engineering,
66(7):1079-1124, 2006.

A. Rocchi, B. Ames, Z. Li, and K. Hauser. Stable simulation of
underactuated compliant hands. In Proc. IEEE Intl. Conf. Robot.
Autom. (ICRA), 2016.

P. Song, M. Yashima, and V. Kumar. Dynamic simulation for grasping
and whole arm manipulation. In Proc. IEEE Intl. Conf. Robot. Autom.
(ICRA), San Francisco, CA, USA, Apr 2000.

D. Stewart and J. C. Trinkle. An implicit time-stepping scheme for
rigid body dynamics with Coulomb friction. In Proc. of the IEEE Intl.
Conf. on Robotics and Automation (ICRA), San Francisco, CA, April
2000.

D. E. Stewart and J. C. Trinkle. An implicit time-stepping scheme for
rigid body dynamics with inelastic collisions and Coulomb friction.
Intl. J. Numerical Methods in Engineering, 39(15):2673-2691, 1996.
J. R. Taylor and E. M. Drumwright. State estimation of a wild
robot toward validation of rigid body simulation. In Proc. Intl. Conf.
on Simulation, Modeling, and Programming for Autonomous Robots
(SIMPAR), San Francisco, CA, 2016.

E. Todorov. A convex, smooth and invertible contact model for
trajectory optimization. In Proc. IEEE Intl. Conf. on Robotics and
Automation (ICRA), Shanghai, 2011.

LEMKE.

