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Abstract. The generalized inertia matrix and its inverse are used exten-
sively in robotics applications. While construction of the inertia matrix
requires Θ(n2) time, inverting it traditionally employs algorithms run-
ning in time O(n3). We describe an algorithm that reduces the asymp-
totic time complexity of this operation to the theoretical minimum:
Θ(n2). We also present simple modifications that reduce the number of
arithmetic operations (and thereby the running time). We compare our
approach against fast Cholesky factorization both theoretically (using
number of arithmetic operations) and empirically (using running times).
We demonstrate our method to dynamically simulate a highly articu-
lated robot undergoing contact, yielding an order of magnitude decrease
in running time over existing methods.

1 Introduction

The inverse of the generalized inertia matrix is used in numerous robotics
applications such as computing the contact space inertia matrix and the
kinetic energy matrix [1]. When mechanism dynamics are computed in
absolute coordinates (i.e., mass matrices are of size 6m×6m, where m is
the number of links in the mechanism), the inertia matrix is banded and
can be trivially inverted in time Θ(m) (though constraint forces must be
computed, typically requiring operations exhibiting cubic time complex-
ity). For n degree of freedom mechanisms without kinematic loops, the
n×n generalized inertia matrix (formulated in independent coordinates)
is dense, symmetric, and positive definite (PD). This matrix can be con-
structed in Θ(n2) time using the Composite Rigid Body Algorithm [2,
3] and is traditionally inverted using a combination of O(n3) Cholesky
factorization and Θ(n2) backsubstitution.
The key algorithms that make possible the results in this paper (the Re-
cursive Newton-Euler Algorithm [4] and the Articulated Body Algorithm
[5]) were developed over three decades ago; however, the community of
robotics researchers is generally unaware of the straightforward implica-
tion of Θ(n2) generalized inertia matrix inversion. This paper presents
a modified version of the latter algorithm optimized toward that new
purpose (efficient Θ(n2) inversion of n×n generalized inertia matrices).
We compare both operation counts and running times against existing
methods for performing the factorization plus backsubstitution.



Before proceeding, observe that we use the concepts of matrix inversion
and solving linear systems of equations interchangeably unless otherwise
noted to simplify presentation. In the context of our presented algo-
rithms, asymptotic time complexity for matrix inversion is Θ(n2) and
complexity for solving a system of linear equations with m right hand
sides is Θ(mn).

2 Background

2.1 State of the art in robot dynamics computation

Robot dynamics equations are usually given in the form:

M(q)q̈ +C(q̇, q)q̇ +G(q) = τ (1)

where M(q) is the generalized inertia matrix, C(q̇, q)q̇ is the combined
vector of Coriolis and centrifugal forces acting on the robot, G(q) is
the vector of gravity forces acting on the robot, and τ is the vector
of actuator forces. When the robot base is “floating” (not affixed to the
environment), the equation maintains the same structure, but additional
terms are added both for the base acceleration and external forces applied
to the base.
State of the art algorithms for computing the joint accelerations as a
function of actuator forces are compiled in works by Featherstone [3,
6] and Featherstone and Orin [7]. Featherstone groups these algorithms
into two categories: O(n3) algorithms that directly solve the system of
linear equations described by Equation 1 directly and an Θ(n) algorithm
(the Articulated Body Method) that treats each link as a rigid body
with a “handle”. This latter algorithm is the key to achieving the Θ(n2)
inversion operation.
The former category is epitomized by the Composite Rigid Body Algo-
rithm, which was studied extensively by Walker and Orin [2]. They claim
Θ(n2) running time for one of their algorithms (method 4); however,
their analysis describes dense matrix-vector multiplication as an O(n)
operation (standard algorithms exhibit O(n2) complexity), and O(n3) is
the true asymptotic behavior.1 Featherstone [8] has reduced this O(n3)
complexity to O(n2d), where d is the maximum depth of the kinematic
“tree”, by exploiting branch induced sparsity : mechanisms with branches
(multiple child links emanating from a parent) induce sparsity in the gen-
eralized inertia matrix. Mechanisms composed of long chains will yield
running times closer to O(n3) than O(n2), and it is even likely that
Featherstone’s specialized Choesky factorization and LDLT algorithms
[8] for exploiting branch induced sparsity are slower than specialized
dense libraries like LAPACK for most cases (experiments described in
Section 6 give credence to this hypothesis).

1Walker and Orin’s algorithm is a minor adaptation of the iterative conjugate gra-
dient method for solving symmetric PD systems and is known to exhibit O(n3) com-
plexity.



Finally, we note that Baraff also provides a linear time dynamics algo-
rithm [9] that could be employed toward our purpose instead of Feather-
stone’s algorithm. However, the constant factor for Baraff’s algorithm (in
absolute coordinates) is dependent upon 6n− r, where n is the number
of joints in the system and r is the number of joint degrees-of-freedom,
while the constant factor for Featherstone’s algorithm (in independent
coordinates) is dependent only upon r; thus, for typical applications with
single degree-of-freedom robot joints, Featherstone’s algorithm should be
significantly faster.

3 Overview of Spatial Algebra

This section presents an overview of Spatial Algebra, which permits dy-
namics algorithms to be described clearly and succinctly. Extensive tuto-
rials of this subject are contained in [3, 6]; this paper employs the system
described in [3].

Spatial vectors are composed of two stacked three-dimensional vectors
(a “line vector” and a “free vector”). For example, the spatial velocity

of a rigid body is represented by the vector v̂ =
[
ω ẋ

]T
. All Spatial

Algebra operations can be performed using standard matrix and vector
arithmetic except the spatial transpose operation. The spatial transpose
operation is denoted using the superscript S and yields v̂S =

[
ẋT ωT

]
when applied to the vector above.

3.1 Spatial transformations

Spatial transformations take the form:

jX̂i =

[
E 0
−r̃E E

]
(2)

where jX̂i is the spatial transform from frame i (defined by rotation
matrix Ri and offset xi) to frame j (defined by rotation matrix Rj and
offset xj) and E = RT

jRi and r = RT
j (xj − xi). The skew-symmetric

operator˜is defined on vector r =
[
rx ry rz

]T
below:

r̃ =

 0 −rz ry
rz 0 −rx
−ry rx 0

 .
A spatial vector v̂i can be transformed from frame i to frame j by:

v̂j = jX̂i v̂i. (3)

while a spatial inertia matrix (defined below) Îi can be transformed from
frame i to frame j via two matrix-matrix multiplications:

Îj = jX̂i Îi iX̂j . (4)



3.2 Spatial rigid body and articulated body inertias

The spatial inertia of a rigid body (in its local frame) is:

Î′ =

[
0 m1
J 0

]
(5)

where the mass of the rigid body is m (1 is the identity matrix) and
its 3× 3 moment of inertia matrix is denoted J. The spatial rigid body
inertia transformed into the “global” reference frame (i.e., via the spatial
transformation in Section 3.1) is denoted Î (rather than Î′). We call the
sum of the spatial rigid body inertia of link i and the composite inertias
of all of link i’s children (successors in the kinematic chain) Îci , the
composite inertia:

Îci = Îi +
∑

j∈children(i)

Îcj . (6)

Featherstone’s Articulated Body Algorithm uses a special inertia matrix,
ÎA—known as the spatial articulated body inertia—and defined below:

ÎAi = Îi +
∑

j∈children(i)

[
ÎAj −

ÎAj ŝj ŝ
S
j Î
A
j

ŝSj Î
A
j ŝj

]
(7)

3.3 Spatial axes

The spatial axis for a link transforms its inner joint velocity to the change
in spatial velocity of that link. Thus, a collection of spatial axes are
analogous to the Jacobian that transforms joint velocities to end effector
velocity. Spatial axes for common single degree-of-freedom joints—for
simplify of presentation and without loss of generality, only single degree-
of-freedom joints are considered in this paper—are given below:

ŝ′i =



[
ui
0

]
if i revolute,

[
0
ui

]
if i prismatic.

(8)

where ui is the unit three-dimensional vector pointing along the joint
axis and 0 is the three-dimensional zero vector. Note that the spatial
axes above are computed in a frame with origin at the joint’s Cartesian
position (denoted by the “prime” applied to ŝi).

4 Notation and conventions

We adopt the following conventions/notation from [3, 6]:
– û indicates that u is a 6×m spatial vector or matrix (m ≤ 6)
– r̂S indicates the spatial transpose operation is applied to r̂
– jX̂k denotes the spatial transformation from frame k to frame j
– ĴA indicates that Ĵ is an articulated body vector or matrix (i.e., it is

used in the context of Featherstone’s Articulated Body Algorithm)



– λ : N→ N maps the index of a link to the index of that link’s parent
The joints and links of an n joint, n link (excluding the base link) mech-
anism are indexed in the following manner: () the base link (fixed or
“floating”) assumes index 0; () the inner joint for the link with index i
assumes joint index i as well; () every link and joint assumes a unique
index; and () no “ancestor” to a link can possess a link index greater
than its descendant.

5 Θ(n2) inverse inertia matrix computation

Our simplified version of Featherstone’s Articulated Body Algorithm is
based on the classical mechanics equation relating change in linear mo-
mentum to applied impulses (abstracted to generalized coordinates):

M∆v = j (9)

where M is a n × n generalized inertia matrix, v is an n-dimensional
vector of generalized velocities, and j is an n-dimensional vector of gen-
eralized impulses. We wish to find the inverse of M:

∆v = M−1j. (10)

This equation indicates that M−1 is equal to the changes in velocity
due to applying n unit-vector impulses (represented by the n × n iden-
tity matrix) to the system. Using impulses and velocity changes in place
of forces and accelerations allows us to avoid determination of gravity,
centrifugal, and Coriolis forces inherent in forward dynamics computa-
tion. Algorithm 1 implements this strategy with focus on practical (i.e.,
numerically stable) implementation: the inverse is not constructed ex-
plicitly.

Algorithm 1 mMultInv(.) multiplies the inverse of the generalized inertia ma-
trix for a fixed-base mechanism with n joints by an n×m matrix (R) in Θ(nm)
time.

Require: articulated body inertia matrices in global frame (ÎA), spatial axes in global
frame (ŝ)

1: for k = 1 . . .m do
2: for i← 1 . . . n do {Initialize articulated body impulses}
3: ŶA

i ← 0̂
4: for i = n . . . 1 do {Propagate impulses}
5: ŶA

λ(i) ← ŶA
λ(i) +

[ ÎAi ŝi(Rik−ŝSi ŶAi )

ŝSi ÎAi ŝi

]
6: ∆v̂0 ← 0̂
7: for i = 1 . . . n do {Compute velocity updates}

8: ∆q̇i ←
δik−ŝSi

[
ÎAi ∆v̂λ(i)+ŶAi

]
ŝS ÎAi ŝi

9: ∆v̂i ← ∆v̂λ(i) + ŝi∆q̇i
10: Mik ← ∆q̇i



All calculations are computed in the global frame rather than using link
frames: the former is more efficient for our approach due to the Θ(nm)
spatial transformations between link frames that would otherwise be
required (Featherstone [7] shows that computation is more efficient in the
link frame than the global frame for the unmodified Articulated Body
Algorithm, in general). We also present Algorithm 2, which contains
necessary modifications to handle mechanisms with floating bases.

Algorithm 2 mMultInvFB(.) multiplies the inverse of the generalized inertia
matrix for a floating-base mechanism with n joints by an n ×m matrix (R) in
Θ(nm) time.

Require: articulated body inertia matrices in global frame (ÎA), spatial axes in global
frame (ŝ)

1: for k = 1 . . .m do
2: for i← 0 . . . n do {Initialize articulated body impulses}
3: ŶA

i ← 0̂
4: for i = n . . . 1 do {Propagate impulses}
5: ŶA

λ(i) ← ŶA
λ(i) +

[ ÎAi ŝi(Rik−ŝSi ŶAi )

ŝSi ÎAi ŝi

]
6: if k ≤ 6 then {Compute floating base velocity change}
7: ∆v̂0 ← −ÎA

−1

0 (Ŷ A
0 + Ik) {Ik is the kth column of the 6× 6 identity matrix}

8: else
9: ∆v̂0 ← −ÎA

−1

0 (Ŷ A
0 )

10: uk ← ∆v̂0
11: for i = 1 . . . n do {Compute velocity updates}

12: ∆q̇i ←
δik−ŝSi

[
ÎAi ∆v̂λ(i)+ŶAi

]
ŝS ÎAi ŝi

13: ∆v̂i ← ∆v̂λ(i) + ŝi∆q̇i
14: Aik ← ∆q̇i

15: return

[
u1 . . . un

A

]

5.1 Complexity Analysis

The operations on lines 5, 8, and 9 of Algorithm 1 each require constant
time (Ŷ A, ÎA, ŝ, and ∆v̂ are of fixed size), so the nested for loops result
in Θ(nm) time complexity.

5.2 Arithmetic Analysis

We can utilize a few optimizations not shown in Algorithm 1 to decrease
the number of arithmetic operations. Vectors and quantities ÎAŝ and
ŝSÎAŝ are computed only once, rather than separately for each iteration
(ŝ and ÎA are dependent upon only the coordinates of the mechanism and
not its velocity). Additionally, the impulse propagation process (Lines 4–
5 of Algorithm 1) needs to start only at the single joint at which δik is
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Fig. 1: Number of multiplication operations for generalized inertia inver-
sion/factorization as a function of multibody joints for four methods: Cholesky
factorization only (blue/solid), both formation and Cholesky factorization
(green/dashed), the Θ(n2) method presented in this paper (red/dash-dot),
and the Θ(n2) parallel method using n processors described in Section 5.2
(black/diamonds). Numbers of arithmetic operations are computed as described
in Section 5.2.

nonzero. Table 1 shows the multiplication and addition counts for the
inversion algorithm.

One exciting potential of this work is its utilization in massively paral-
lel computation. Although computing articulated spatial inertias must
be done sequentially, the spatial axes (ŝ) and the isolated spatial iner-
tias (Î) can be computed in parallel. Each column of R can be solved
(or, equivalently, each column of M−1 can be determined) in parallel as
well. Thus, if one employs an n multiprocessor system for solving, only
261n/2 + 108 multiplications and 133n+ 63 additions are required (spe-
cific operation counts are given in Table 3 for an n-processor system).
Cholesky factorization benefits little from massively parallel or SIMD
computation.



Table 1: Arithmetic operation counts for Θ(n2) inversion algorithm (Algo-
rithm 1)
Operation Multiplications Additions

Computing spatial axes in global frame (ŝ) 24n 6n

Computing isolated spatial inertias (Î) 84n 57n

Computing articulated spatial inertias (ÎA) 108n 107n

Impulse propagation (Ŷ ) 13n2 13n2

Link and joint velocity updates (∆v̂,∆q̇) 19n2/2 26n2/2

Total 45n2/2 + 216n 26n2 + 170n

Table 2: Arithmetic operation counts for Composite Rigid Body Algorithm (n
joint, fixed base mechanism, global frame)
Operation Multiplications Additions

Computing spatial axes in global frame (ŝ) 24n 6n

Computing isolated spatial inertias (Î) 84n 57n
Computing composite inertia matrices (Ic) 0 13n− 13

Computing Îŝ vectors 36n 24n

Computing ŝSi Îj ŝj (elements of M) 3n2 5n2/2
Cholesky factorization (naive) n3/2 + n2/2 + n n3/2

Total n3/2 + 7n2/2 + 145n n3/2 + 5n2/2 + 100n− 13

6 Experiments

Numerical experiments were conducted with the Moby robot dynam-
ics library. Vector arithmetic utilized tuned BLAS libraries (ATLAS).
Cholesky factorization was performed using LAPACK, our implementa-
tion of Featherstone’s branch induced sparsity (BIS) factorization [8], or
both. Experiments were conducted on a dual core 2.8GHz Intel Xeon
W3530 processor (four virtual cores using HyperThreadingTM) running
Ubuntu Linux. for Cholesky factorization as well as our implementation
of Featherstone’s branch induced sparsity (BIS) Cholesky factorization.

6.1 Single-threaded inversion experiments

The experiment described in this section uses a single-threaded version
of the Moby library. The articulated bodies used in these experiments
are fully serial (i.e., the kinematic tree is of depth n) to obtain the
most conservative timings for our method. However, we also wished to
compare our solving algorithm against BIS Cholesky factorization. As
indicated by Figure 2, we tested branched bodies of expected depth n/2
only for the BIS method: with uniform probability 0.5, we added a link
as a sibling to another rather than adding that link to the end of the
chain (no link was permitted more than two children).



Table 3: Arithmetic operation counts per processor for Θ(n2) inversion algorithm
(n joint, fixed base mechanism) on n processors
Operation Multiplications Additions

Computing spatial axes in global frame (ŝ) 24 6

Computing isolated spatial inertias (Î) 84 57

Computing articulated spatial inertias (ÎA) 108n 107n

Impulse propagation (Ŷ ) 13n 13n
Link and joint velocity updates (∆v̂,∆q̇) 19n/2 13n

Total 261n/2 + 108 133n+ 63

6.2 Multi-threaded inversion experiment

This experiment used OpenMP and a multi-threaded version of Moby to
compute the inverse of the generalized inertia matrix; threads were lim-
ited to four (the Intel Xeon presents four virtual cores via HyperThreadingTM).
Unlike the previous experiment, which timed only CPU operations, this
experiment timed all operations (including I/O and time waiting for the
OS’s scheduler) in order to assess efficiency gains via parallelism.

6.3 Simulation experiments

We tested the effectiveness of our method on a “real world” problem:
dynamic simulation of a centipede walking on a planar surface. The cen-
tipede was simulated using increasing numbers of body segments (the
maximum number of body segments was 250). Each body segment was
connected to two upper legs via spherical joints; each upper leg was con-
nected to a lower leg via a revolute joint. The simulation used explicit
Euler integration with a step size of 1e−5 for one thousand steps. The
software setup used in the previous experiment was employed in this ex-
periment as well. Timings were conducted over all operations: dynamics
computation, collision detection, contact resolution, etc.; however, only
CPU timings were used (as in the first experiment). Contact resolution
used the method described in [10], which requires computing the contact
space inertia matrices NTM−1N, NTM−1D, and DTM−1D (N and D
are contact Jacobians for the normal and tangent directions, respec-
tively); this was the only code that required the inverse inertia matrix
and is solely responsible for the timing differences in Figure 4.

7 Discussion

Our Θ(n2) inversion method is amenable to both symbolic computa-
tion (which could significantly reduce the number of arithmetic com-
putations) and parallelization (especially in the context of SIMD/GPU
processing).
Figures 2, 3, and 4 from the experiments in the previous section show
that our algorithm is competitive with BLAS/LAPACK even for bod-
ies with relatively few degrees-of-freedom (fewer than 100); for bodies
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Fig. 2: Times required to compute the inverse of the generalized inertia ma-
trix using the presented Θ(n2) method (red/dash-dot) and the construction
and Cholesky factorization of the generalized inertia matrix using () LAPACK
(blue/solid) and the branch induced sparsity method for () a serial body of
depth n (green/dashed) and for () a branched body of expected depth n/2
(black diamond).

with greater degrees-of-freedom, the asymptotic advantage of our ap-
proach becomes evident quickly. The experiment using multi-threading
in Section 6.2 illustrates the potential gains in performance from multi-
processing: using two threads increases performance over one thread by
34%, and using four threads increases performance by 58% and 117%,
respectively, over two threads and one thread. Larger scale SIMD par-
allelism (via GPU processing, for example) should yield further large
increases in performance.

The experiments in the previous section illustrate the power of tuned
BLAS and LAPACK libraries for vector arithmetic and linear algebra:
Cholesky factorization yielded superior performance for n < 130 in the
first experiment (which used tuned libraries) and inferior performance
in the third experiment. The second experiment illustrates the potential
gains in performance from multiprocessing: using two threads increases
performance over one thread by 34%, and using four threads increases
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Fig. 3: Times required to compute the inverse of the generalized inertia matrix
using LAPACK’s Cholesky factorization (blue/solid) and the presented Θ(n2)
method with ()one thread (red/dash-dot), () two threads (green/dashed), and
() four threads (black/diamond).

performance by 58% and 117%, respectively, over two threads and one
thread.
All experiments clearly show that for applications that require inverting
the generalized inertia matrix of highly articulated robots, our method
yields significant performance increases. Further optimizations should
yield additional increases.
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